US009094186B2

a2 United States Patent

Corts et al.

US 9,094,186 B2
Jul. 28, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

SYSTEM AND METHOD FOR (58) Field of Classification Search
TRANSMITTING DIGITAL MULTIMEDIA CPC ... HO4B 1/707, HO04J 13/10; H04J 13/0022
DATA WITH ANALOG BROADCAST DATA USPC .o 375/219, 295; 705/40, 14

Applicants:David Corts, Nashville, TN (US); Bryce

See application file for complete search history.

Wells, Nashville, TN (US); Paul (56) References Cited
Signorelli, Ridgefield, CT (US); Lee
Hunter, Darien, CT (US); Terrance U.S. PATENT DOCUMENTS
Snyder, Washingtonville, NY (US) 42300990 A * 10/1980 Tertetal. ..ooorerrnne 725/22
. . 4,477,809 A * 10/1984 Bose ... 340/10.41
Inventors: David Corts, Nashville, TN (US); Bryce 4,788,543 A * 11/1988 RUDIN wovooovvveeererrrnnnn.. 340/7.21
Wells, Nashville, TN (US); Paul 5,278,826 A 1/1994 Murphy et al.
Signorelli, Ridgefield, CT (US); Lee (Continued)
Hunter, Darien, CT (US); Terrance
Snyder, Washingtonville, NY (US) FOREIGN PATENT DOCUMENTS
Assignee: Impulse Radio, Inc, Larchmont, NY WO 0019647 A3 4/2000
(US) WO 0058860 Al 10/2000
Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 Author Unknown, “In-band on-channel,” acticle downloaded Feb.
U.S.C. 154(b) by O days. 14, 2009 from http://en.wikipedia.org/wiki/In-band_ on-channel, 1
page.
Appl. No.: 13/795,229 (Continued)
Filed: Mar. 12,2013
Primary Examiner — Qutbuddin Ghulamali
Prior Publication Data (74) Attorney, Agent, or Firm — Withrow & Terranova,
US 2015/0146711 A1~ May 28, 2015 PLLC

Related U.S. Application Data

Continuation of application No. 10/484,518, filed as
application No. PCT/US02/22898 on Jul. 17, 2002,
now Pat. No. 8,396,100, said application No.
10/484,518 is a continuation-in-part of application No.

(57) ABSTRACT

A method and system for the transmission of digital data
(210) over existing analog radio frequencies (230) is pre-
sented, wherein the digital data may include audio data,
visual data or audio-visual data for presentation either with
analog broadcast data or at a selectable time. The digital data
may be transmitted over a plurality of sub-channels that have

(Continued) varying degrees or reliability (250). A “quality-of-service”
Int. Cl process manages the transmission of digital data over various
g sub-channels based on the reliability of the sub-channel, the
HO4B 17/02 (2006.01) amount of digital data and the type of digital data to be
HO4L 5/16 (2006.01) transmitted. The digital data may further be encrypted and
Ho4L 7/04 (2006.01) authenticated.
U.S. CL
CPC e HO04L 7/04 (2013.01) 18 Claims, 39 Drawing Sheets
DATA SYNCHRONIZATION STRUCTURE
11100101 0111 0001 1101 0101 0000 0000 0000 0010 1011 1111 0010 0000 | 0000 0101 1101 1400 | G000 0000 0111 1000 | 0000 0000 0011 1000
SYNCHRONIZATION | SYNCHRONIZATION SYNCHRONIZATION SYNCHRONIZATION | SYNCHRONIZATION | SYNCHRONIZATION
EVENT ID TYPE EVENTLENGTH EVENT SPACING EVENT TIMER EVENT TIMER
(Bo-Bys) {B4g-B1g) {Bgg - B51) (Bsp - Bg7) COUNT INDICATOR
(Bgg - Bg3) (Ba4 - Bgg)
58737
DEVICE DATA STORE

(EACH RECORD REPRESENTS A NEW SET OF DATA WAITING FOR A SYNCHRONIZATION EVENT TO OCCUR)

SYNCHRONIZATION CUE | TYPE LENGTH | SPACING [EVENT TIMER COUNT | EVENT TIMER COUNT
42355 228 240000ms | 1500ms 160 0
58737 229 180000ms_| 1500 ms 120 56
60792 228 3601230ms | 1500ms 2400 362
28437 228 60000ms | 1500 ms 40 0
7517 225 30000ms | 1500ms 20 0
60783 [10 [18o4s0ms [1500ms | 120 | 0

US 9,094,186 B2
Page 2

Related U.S. Application Data

09/839,451, filed on Apr. 20, 2001, now Pat. No. 7,908,
172, which is a continuation-in-part of application No.
09/802,469, filed on Mar. 9, 2001, now abandoned.

(60) Provisional application No. 60/306,080, filed on Jul.
17, 2001, provisional application No. 60/188,050,
filed on Mar. 9, 2000.

(56) References Cited
U.S. PATENT DOCUMENTS

5,278,844 A 1/1994 Murphy et al.
5,303,393 A 4/1994 Noreen et al.
5,315,583 A 5/1994 Murphy et al.
5,465,396 A 11/1995 Hunsinger et al.
5,507,024 A 4/1996 Richards, Jr.
5,537,549 A * 7/1996 Geeetal.ooeeevrnnnn. 709/224
5,583,873 A 12/1996 Miyake et al.
5,584,050 A * 12/1996 Lyonscc. 455/2.01
5,615227 A * 3/1997 Schumacheretal. ... 375/142
5,633,896 A 5/1997 Carlin et al.
5,661,787 A * 8/1997 Pocockooeeernnn. 379/101.01
5,692,058 A 11/1997 Eggers et al.
5,701,593 A * 12/1997 Storzetal.c.cccovennn.n.. 455/70
5,703,795 A 12/1997 Mankovitz
5,703,954 A 12/1997 Dapper et al.
5,708,662 A 1/1998 Takashima
5,745,525 A 4/1998 Hunsinger et al.
5,757,854 A * 5/1998 Hunsingeretal. 375/260
5,764,706 A 6/1998 Carlin et al.
5,802,066 A 9/1998 Miyake et al.
5,809,065 A 9/1998 Dapper et al.
5,815,671 A 9/1998 Morrison
5,819,160 A 10/1998 Foladare et al.
5,826,165 A * 10/1998 Echeitaetal. 725/22
5850415 A 12/1998 Hunsinger et al.
5,857,156 A 1/1999 Anderson
5,878,089 A 3/1999 Dapper et al.
5,898,680 A 4/1999 Johnstone et al.
5,898,732 A 4/1999 Dapper et al.
5,903,598 A 5/1999 Hunsinger et al.
5,930,687 A 7/1999 Dapper et al.
5,946,326 A 8/1999 Rinne
5,949,796 A 9/1999 Kumar
5,949,813 A 9/1999 Hunsinger et al.
5,956,373 A 9/1999 Goldston et al.
5,956,624 A 9/1999 Hunsinger et al.
5,991,601 A 11/1999 Anderson
6,005,886 A 12/1999 Short
6,005,894 A 12/1999 Kumar
6,081,780 A 6/2000 Lumelsky
6,108,810 A 8/2000 Kroeger et al.
6,128,334 A 10/2000 Dapper et al.
6,128,350 A 10/2000 Shastri et al.
6,148,007 A 11/2000 Kroeger
6,192,340 Bl 2/2001 Abecassis
6,218,350 Bl 4/2001 Beggs et al.
6,246,672 B1* 6/2001 Lumelsky ... 370/310
6,286,063 Bl 9/2001 Bolleman et al.
6,463,469 Bl 10/2002 Yavitz
6,590,944 Bl 7/2003 Kroeger
6,684,249 Bl 1/2004 Frerichs et al.
6,721,337 Bl 4/2004 Kroeger et al.
6,957,041 B2* 10/2005 Christensenetal. 455/3.06
7,072,932 Bl 7/2006 Stahl
7,099,348 B1* 8/2006 Warwickcc.cccoevrrnenn. 370/442
7,248,602 B2* 7/2007 Robbinsetal. 370/465
7,415,430 B2 8/2008 Christensen et al.
7,693,508 B2* 4/2010 Leungetal. 455/412.1
7,908,172 B2 3/2011 Corts et al.
2002/0010789 Al™* 1/2002 Lordcccoeovvvevvvcevennnn 709/231
2002/0049717 Al 4/2002 Routtenberg e

2002/0069218 Al* 6/2002 Sulletal. 707/501.1

2002/0141491 Al 10/2002 Corts et al.

2003/0023986 Al* 1/2003 Honmura 725/134
2005/0204385 Al* 9/2005 Sulletal 725/45
OTHER PUBLICATIONS

Raymond, “Morgan & Finnegan Files for Bankruptcy,” The Ameri-
can Lawyer, Law.com, Mar. 18, 2009, 1 page.

Author Unknown, NYTimes reference definition of “waveform,”
downloaded Feb. 14, 2009 from http:/query.nytimes.com/search/
query?query=waveform&srchst=ref&submit.x=26&submit.y=9, 1
page.

Skegg, M. et al., “Digital gadgets: We’re about to be bombarded with
sharp new sound and vision—but is the hardware any good? Martin
Skegg and Michael Oliviera-Salac find the best,” The Independent,
Independent Print Ltd., London, England, Oct. 17, 1998, p. 75.
Author Unknown, “IBOC Digital Radio Broadcasting for AM and
FM Radio Broadcast Stations”, FCC Encyclopedia, Federal Commu-
nications Commission, downloaded Sep. 27, 2013, 3 pages, http://
www.fce.gov/encyclopedia/iboc-digital-radio-broadcasting-am-
and-fm-radio-broadcast-stations.

Final Office Action for U.S. Appl. No. 09/839,451 mailed Jul. 3,
2007, 9 pages.

Final Office Action for U.S. Appl. No. 09/839,451 mailed Feb. 26,
2008, 12 pages.

Final Office Action for U.S. Appl. No. 09/839,451 mailed Jun. 29,
2006, 10 pages.

Final Office Action for U.S. Appl. No. 09/839,451 mailed Mar. 27,
2009, 31 pages.

Final Office Action for U.S. Appl. No. 09/839,451 mailed Oct. 17,
2007, 9 pages.

Final Office Action for U.S. Appl. No. 09/839,451 mailed Feb. 20,
2009, 18 pages.

Non-final Office Action for U.S. Appl. No. 13/048,493 mailed Oct.
21,2011, 12 pages.

Non-final Office Action for U.S. Appl. No. 09/839,451 mailed Apr. 8,
2005, 6 pages.

Non-final Office Action for U.S. Appl. No. 09/839,451 mailed Aug.
20, 2008, 8 pages.

Non-final Office Action for U.S. Appl. No. 09/839,451 mailed Aug.
24,2010, 19 pages.

Non-final Office Action for U.S. Appl. No. 09/839,451 mailed Dec.
14, 2006, 9 pages.

Non-final Office Action for U.S. Appl. No. 09/839,451 mailed May
26, 2010, 8 pages.

Non-final Office Action for U.S. Appl. No. 09/839,451 mailed Oct.
18, 2005, 7 pages.

Notice of Allowance for U.S. Appl. No. 09/839,451 mailed Nov. 3,
2010, 8 pages.

Notice of Allowance for U.S. Appl. No. 13/022,068 mailed Apr. 26,
2012, 9 pages.

Notice of Allowance for U.S. Appl. No. 13/048,493 mailed May 3,
2012, 9 pages.

Non-final Office Action for U.S. Appl. No. 13/048,428 mailed Aug.
12, 2013, 13 pages.

Final Office Action for U.S. Appl. No. 13/048,428, mailed Sep. 29,
2014, 11 pages.

International Preliminary Examination Report for International
Patent Application No. PCT/US02122898 mailed Oct. 14, 2003, 4
pages.

Written Opinion for International Patent Application No. PCT/
US02122898 mailed Jun. 11, 2003, 4 pages.

Non-Final Office Action for U.S. Appl. No. 10/484,518 mailed May
14, 2008, 13 pages.

Non-Final Office Action for U.S. Appl. No. 10/484,518 mailed Feb.
23, 2009, 9 pages.

Non-Final Office Action for U.S. Appl. No. 10/484,518 mailed Aug.
20, 2009, 10 pages.

Final Office Action for U.S. Appl. No. 101484,518 mailed Feb. 18,
2010, 15 pages.

Non-Final Office Action for U.S. Appl. No. 10/484,518 mailed Nov.
24,2010, 13 pages.

US 9,094,186 B2
Page 3

(56) References Cited Final Office Action for U.S. Appl. No. 101484,518 mailed Aug. 29,
2012, 11 pages.
Notice of Allowance for U.S. Appl. No. 101484,518 mailed Nov. 7,
Non-Final Office Action for U.S. Appl. No. 10/484,518 mailed Mar. 2012, 7 pages.

OTHER PUBLICATIONS

50, 2011, 10 pages. Non-final Office Action for U.S. Appl. No. 131048,428, mailed M
Final Office Action for U.S. Appl. No. 101484,518 mailed Oct. 26, on-iinal Dlice Action for L.5. Appl. No. /428, mailed May
2011, 13 pages. 21, 2015, 7 pages.

Non-Final Office Action for U.S. Appl. No. 10/484,518 mailed Jan.
17,2012, 15 pages. * cited by examiner

US 9,094,186 B2

Sheet 1 of 39

Jul. 28, 2015

U.S. Patent

L "OIid

JOIAY3S
SONMHOMLIN
TVYNY31X3

JOV4HILNI
30IAY3S
TVNY3ILX3 3048l

V 43AIAOHd 3OINN3S
JOIAIA H3ASN 209!
= e
ovr
ot
vivVa A3LLVYWHO4 Y.ivd g3allvWEO4
209i
204l
HILLINSNVHL
204

oe\« Z

M3IIAYIAO 30V4HILNI JNAYFS TVNYEILXT 204l

US 9,094,186 B2

Sheet 2 of 39

Jul. 28, 2015

U.S. Patent

¢ 'Oid

N3

(013 'HVINTI3D LINYILNI
MHOMLAN ‘SOLLYWI 131
ALILNT 3LVIAIWHILNI

NOILDINNOD
SSIT1IHIM N\
N\
SN
o
H¥31Svoavous
— MNIT Y3AIAOHd OL AVM3ILYD
321A3a ¥3AIFOTH > [1]¥4
YNITAVM3LYD OL ¥IAIAOYd
(AVM-3NO) L 144
d NOISSINSNYHL 008| %4
OILN3H1NY ANV 39ND3S I S
9

U.S. Patent Jul. 28, 2015 Sheet 3 of 39 US 9,094,186 B2

PROVIDES INFORMATION
THAT WILL DETERMINE THE
TYPE OF DATA
IN THE PAYLOAD

PROVIDES A MEANS FOR
THE SENDER TO ALLOW ONLY
A SUBSET OF RECEIVERS
TO ACCEPT THE DATA

DATATYPE FILTER %
310

RECIPIENT AUTHENTICATION
(SUBSCRIPT:IBC2)SJ SERVICES) d

PROVIDES INFORMATION
THAT THE RECIPIENT MAY USE
TO DETERMINE THE DATA
IS FROM THE EXPECTED
SENDER

DATA PROVIDER AUTHENTICATION
330

4

ENCRYPTION INFORMATION
340 B

PROVIDES INFORMATION

SR
PAYLOAD N ENCRYPTED

THE PAYLOAD
FOR THE
RECIPIENT

FIG. 3

US 9,094,186 B2

Sheet 4 of 39

Jul. 28, 2015

U.S. Patent

v
a1 dnox9

9y
HOLVOIIANI IN3AS

ek
0IINIAS

/4]
SOVI4 SNIVLS

747
03AY3STY SOV SNIVLS

8y
30NLINOVA 321S 3113

20
438NN 371S 3114

cly
G HONOYHL |
3A31 AYO93LVD INJINOJ|

01y
ONLIVY INIINOD

807
dINIVNOd

¥ "Old
VLYQ 318YLNOIXIHA1aVIANTY FHL 108 vIvQ ¥3sn
V1¥Q 435N 3HL 40 IdAL JWIN 3HL AJILNIAI OL 03SN 38 AV IVHL QYoM LIg 91 | 00€- 582 3dAL ININ
20178 YL¥Q ¥3SN YIHLONY NI VLvQ JHL HLIM
¥0018 VL¥Q ¥3SN I¥HL dNOYO OL 035N 39 AYW IvHL qyOm Lig g, | ¥82-6%¢ 01 dNOHY
ONISSII0Nd 38 GINOHS VIVG ¥3SN SIHL LAVLS TIM LYHL
JOVSSIW IND INIAT NV NIHLIM NOLLISOd Y AJIINIO 0L a3snsLiger | 89¢-€SC YOLVOIONI LN3AT
010NV 3HL HLIM V1YQ FHL 3ZINOYHINAS]
01 038N 39v¥SSIW 3N IN3AT 3HL AJILN3GI OL G3AHISTY SLIF 91 25¢- 162 QI IN3A3
VIVQ 3HL 904
SOV1d SNIVLS SY OL ISN AVIN ¥3AIZ03Y 3HL LvHL SLIB VNOINONIZE | 962-s0¢ SLig SNLVLS
35N FNLNIMO4 Q3ANISTY Liaze | voz-€1 118 Q3AY3SHY
(SILAGYOIN - L1 'SALAGOTIN - 01 'SILAG - 10 ‘SLIE - 00) 'SLI8 3ZIS
3714 3HL 40 3ANLINOYW FHL ININY3L30 0L GISN 38 AVW IYHL QYoM LIg Z Y ZLb- 12y | SANLINOVW 321834
(SILABYOIN - L1 'S3LAGOTIN - O} ‘SILAG - 10 'SLIE - 00) ‘SLig 3ZIS
3714 3H1 40 3ANLINOYIN FHL ININY313A OL Q3SN 38 AYW LYHL GHOM LIg 91 ¥ 041 -SS1 HIGNNN 3Z1S311d
VIN - 00000000 /N - 00000000 ‘SIIXNVA - 10000000 ‘G - 01000000 ‘SLEO0JS .
-00010000 '3 V¥ 3HL 3ZI09IIVD OL 035N 38 AVA IVHL S1ig 8 40 Sdno¥n g | Y5t~ 9H | AHOOLVIIN3INOD
AINO SLINQY- LEL
NYHL STINIIANY TTV - 1000 "O'T ‘ONILYY LNILNOD OL 03N 39 AVW LYHL SLIg SH-2h ONILYY LNIINOD
"SYALLTT TIVD ¥ 40 INTWAIND3
3H1 0L 3LYISNVHL OL 378V 38 QINOHS VYA IHL H3IANIS JHL 40l
NIVWOQV 3HL AJILN3Q) OL ¥31SYOavOHE FHL Ad 035N 39 AVW IVHL S3LAS b HI-08 QINIVWoa
"43N393 3HL A8 G3LNDIXI/ATYIANTY
SYM YLVA 3NIL LSYT IIL IHL ONILNISTHAIY QHOM LIg 28V 6L-87 [dWVLS JNIL ¥3AIZOR
"SANOD3SI TN NI GILNISIudI 38 AVW IWIL SIHL "¥3LSYOAVOuS 3HL WOY
IN3S SYMVLVQ 3HL IWIL FHL ONILN3STHAIY QHOM Lig 28V Lv-9 | dAWVISINILYIONIS
ANYW3Q NO]
V1va 3HL 30D IHL TIVO OL G3SN 38 AYW LVHL GHOM Lig 9 V §1-0 | NOLLYZINOUHINAS
1ov41Sav |NOILISOd Lig NOILdI¥0S3a

NOLLYWHOANI 301AY3S VLVA

30v
dWVLS JWIL H3AIFO3Y

op
dINVLS 3WNLL H3ANIS

a0
3N9 NOUVZINOYHINAS

|

U.S. Patent

Jul. 28, 2015 Sheet S of 39

USER AGENT HANDLER INVOCATION

1

USER AGENT PARSES
IBOC DATA

510

Y

AGENT ITERATES THROUGH
PARSED DATA

|

US 9,094,186 B2

520

DONE
540

DATALEFT?

530

NO

INVALID
COMMAND

560

!

RELATES TO
EXTERNAL COMMAND?

INVOKE ASSOCIATED
MESSAGE HANDLER

570

FIG. 5

U.S. Patent

Jul. 28, 2015 Sheet 6 of 39

USER AGENT HANDLER OPERATION

!

RECEIVE NOTIFICATION
MESSAGE FROM USER AGENT
610

Y

READ MESSAGE PARAMETER
INFORMATION

620

4

BUILD XML INVOCATION
MESSAGE

630

Y

WRITE XML INVOCATION
MESSAGE TO SERVICE REGISTER

640

Y

WAIT FOR RESPONSE
650

RESPONSE?
660

RESPONSE
TIMEQUT?
680

YES

FIG. 6

US 9,094,186 B2

/600

PROCESS
RESPONSE

670

Y

DONE
690

U.S. Patent Jul. 28, 2015 Sheet 7 of 39 US 9,094,186 B2

SERVICE INVOCATION

/700

LISTENS FOR INVOCATION
REQUEST
710

Y

REQUEST?
120

EXECUTES REQUEST
730

REQUEST
SUCCESSFUL?

740

YES

Y Y

BUILD BUILD
RESULT MESSAGE ERROR MESSAGE
150 160
Y i
Y
RETURN RESULT
110
Y
DONE
180

FIG. 7

U.S. Patent Jul. 28, 2015 Sheet 8 of 39

SERVICE INVOCATI(gN ALTERNATIVE
700

l

US 9,094,186 B2

LISTENS FOR INVOCATION
REQUEST
710b

\ 4

REQUEST?
720b

INVOKES REQUEST HANDLER
730b

REQUEST
HANDLER EXISTS?
740b

Y

SEND REQUEST IGNORE
TO HANDLER REQUEST
750b 760b

I b

FIG. 7B

U.S. Patent Jul. 28, 2015 Sheet 9 of 39

SERVICE HANDLER INVOCATION

1

\

LISTEN FOR XML REQUEST
802

REQUEST?
804

US 9,094,186 B2

/800

BUILD INVALID REQUEST
RESPONSE MESSAGE

818

Y

PARSE REQUEST MESSAGE
806
Y
VALIDATE MESSAGE
808
YES VALID? NO
810
y
INVOKE SERVICE
812
RETRIEVE RESULT
814
BUILD RESPONSE MESSAGE
WITH RESULHEIFORMATION

FIG. 8

RETURN
RESPONSE MESSAGE
820

!

DONE
822

U.S. Patent Jul. 28, 2015 Sheet 10 of 39 US 9,094,186 B2

MESSAGE VALIDATION

l

RECEIVES MESSAGE OBJECT
210

900
/

NO

VALID SERVICE
REFERENCE?
920

ALID
PARAMETER
MASK?
930

NO

SERVICE
IS AN EXECUTABLE
OR INVOCABLE MODULE?
940

NO

Y

MESSAGE
IS INVALID MESSAGE IS VALID
950 960

Y

Y

RETURN RESULT
970

FIG. 9

US 9,094,186 B2

Sheet 11 of 39

Jul. 28, 2015

U.S. Patent

0l Oid
onand Si o
31VAIYd SI W
NOILJAYONIT A3X-2118Nd
Gy = by
NOILJAYONT TYNOILNIANOD
0601
1 o
N
IYYANOD
by
Y | g A
0801 [+ TR
-
G00T
NOILONNZ HSVH AVM-3NO V ONISN
NOILVDILNIHLNY 3OVSSIN

0z01

HSVH

00}
JOVSSIAN

U.S. Patent Jul. 28, 2015 Sheet 12 of 39 US 9,094,186 B2

DATAAUTHENTICATION

1100 \ l
READ AUTHENTICATION MODE
102

Y

READ TIMESTAMP, NONCE 1
1104

SEND NEW TIMESTAMP, OLD NONCE IN TWO-WAY
AND NEW NONCE MODE?
1108 1106
NO
Y
. RECEIVE REPLY
110
Y
IS THREE-WAY YES | READHASHALGO ID, KEY LENGTH,

REPLY? % KEY DS LENGTHAND DS

112 114
Y
COMPARE NONCE AND TIMESTAMP
IN THREE-WAY INFORMATION, DISCARDING IF BOGUS

MODE? 1120

s -
YES ‘ {
SEND ADDITIONAL SECOND NONCE MEléASSA%E DE%'I.‘E;YI\II::IT?JISI'ETAL
AND THIRD NONCE 1122 1124
o T =
|

4

PASS DISCARD
AUTHENTICATED DATA UNAUTHENTICATED
TO PROCESSOR DATA
1128 130

FIG. 11

US 9,094,186 B2

Sheet 13 of 39

Jul. 28, 2015

U.S. Patent

8+{+81+1g

2} "Old

v_+_+wn+_m . m+_+wn+_m . —+_+w\.+_m ._+m~+_m -8Ll+lg| Li4lg-0l+lg
JHNIYNOIS TYLIDIA| HLONITSa

69+lg . 99+lg

§9+1g - 16+lg

S.118 NI HLON3T RINLVYNOIS TVLIOIG=)

0G+lq .GE+lg

S118 NI HLONI1 AN onend = |

VEHg.T+lg | I+lg.0+lg

ASNINBNd | HLONIT AN | WHLIHOOTY HSVH | 2 3NTVA 3ONON | | INTYA JONON | JWVLSINIL | 3AON HLNY

000+ 0LO | 00K 100 | 10000 | 0LL0 0040 0040 1000 10N | 0000 HOF | HLLO0KD | ko
1343 [0eet (i[443 (i[44% 9tzt arer g0zt voet
31dWVX3 Y3QV3H NOILYOILNIHLAY
N3AN3S AS GINOIS JUNLYNOIS NV nois| [3nTvA AuveiodnaL NOILYOLNIHLNY
ALINIQIS.INJIdIOTY | | LJANONI OL 338N AN T b QILVYINID ATNOGNVY 40 300N
FUNLYNOIS A2 JN8nd SIAOW NIVLY3D ¥04 QITVA 1 3UNLYNDIS
TVLISIQ 30 HLONT 40 HIONTT 038N 3NTVAGNOD3S | | | 3HLHOIHM OLdN FWiL
9ech 57T Cv74% 74} 8icl vier (34} 9027 a0t
FYNIVNOIS Send QNHLNOOY[z3nvA | L3MvA 300N
wiloia . | HLONT1Sa | A HLONT1ADI 1™ P higyd 3ONON 3ONON | dWVASIAIL | Noj1wDILNHLNY
MO H3QYIH NOILYOILNIHLAY

US 9,094,186 B2

Sheet 14 of 39

Jul. 28, 2015

U.S. Patent

€L Old
0 0zt SW oSk | Sw oSyost Obl £8.09
0 0z SWw 006} SWw 0000€ 622 116/
0 of SWw 0051 SW 00009 8e¢ 1682
29¢ 002 SW00SI | SW 0£Z100€ 822 26109
95 0z} SW00Sh | SW 00008l 622 16186 -
0 091 SW oSk | Sw0000ve 822 GSEZh
INNOD ¥3WIL LNIA3 | INNOD ¥3WIL INIAS| ONIOVdS HLONT 3dAL 3N NOILYZINOYHONAS
(4N220 OL INIFAT NOILYZINOYHONAS ¥ 404 ONILIVM V1V 40 13S M3N V SINISTHAIY a¥03H HOVI)
3501S Y1va 301A30
16185
(66g - 78g) (68g -83g)
HOLYOIONI INNOD (499 - C5g) (V5g - 0Zg) (6lg-9lg) (Stg-Og)
¥IWIL IN3AT YIWIL IN3A3 ONIOVdS INIAT HLONIT INIA3 3dAL al IN3A3
NOILVZINOYHONAS | NOILVZINOYHONAS | NOILYZINOYHONAS NOILVZINOHHONAS NOILLVZINOYHONAS | NOILYZINOYHONAS
0001 1100 0000 0000 | 0001 1440 0000 0000 | 0OLL LOLL LOLO 0000 | 0000 0400 LLLL LLOL 0100 0000 G000 0000 100 LOLL 1000 1440 LOLO 0L}

FANLINYLS NOILVZINOYHONAS Yiva

U.S. Patent Jul. 28, 2015 Sheet 15 of 39 US 9,094,186 B2

1400
/

TATIC PARAMETER THE STRUCTURE OF THE PARAMETERS
ST DERRONS T e ARE DEPENDENT ON THE IMPLEMENTATION. THE
1402 VALUES SHOULD REPRESENT THE NUMBER OF

STATIC SUB-CHANNELS AND THEIR Q0S LEVELS

\

DETERMINE THE SUB-CARRIERS

THAT MAKE UP A SUB-CHANNEL
1404

L

STORE THE BUILT SUB-CHANNELS
IN AN ADDRESSABLE MEMORY
STRUCTURE
1406

FIG. 14

U.S. Patent Jul. 28, 2015 Sheet 16 of 39 US 9,094,186 B2

1500
/

PARAMETERS FOR THE PARAMETERS SHOULD INDICATE QoS
SUB-CHANNEL QoS [_______ LEVEL AT A MINIMUM.
WANTED MAY ALSO INDICATE STATIC OR DYNAMIC.
1508 DYNAMIC IS THE DEFAULT.

MAY ALSO INDICATE A DESIRED LEASE TIME.

IS THE REQUEST
FORA STATIC OR DYNAMIC
SUB—(%I;?B\INEL?

DYNAMIC

STATIC

RETURN AN
ERROR
MESSAGE

1518

DETERMINE THE SUB-CARRIERS
THAT MAKE UP A SUB-CHANNEL

1520
GRAB THE REQUESTED
SUB-CHANNEL FROM AN
ADDRESSABLE MEMORY
STRUCTURE
1514
) 4
REE}}JRR(?'RAN SET LEASE TIME AND
»/ RETURN THE SUB-CHANNEL
MESSAGE
1524 / 1516

FIG. 15

U.S. Patent Jul. 28, 2015 Sheet 17 of 39 US 9,094,186 B2

OEN Tree Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY INNER | FIELD | CONSTR | METHOD DETAIL FIELD | CONSTR | METHOD

Interface QoSManager 1510

public interface QoSManager

Handles the creation of subchannels and the level of service for a subchannel. It is also
the point of entry for data services requiring a handle to sub-channels to send data

Method Summary

SubChannel | getSubChannel (int QoSLevel) 1620

Returns a subchannel of a specific QoSLevel returns null if the
specific channel cannot be returned

Method Detail

getSubChannel 1630

public SubChannel getSubChannel (int QoSLevel)
throws java.lang.Exception

Returns a subchannel of a specific QoSLevel returns null if the specific channel
cannot be returned
Throws:

java.lang.Exception - if the Subchannel cannot be acquired.

M Deprecated Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY INNER | FIELD | CONSTR | METHOD DETAIL FIELD | CONSTR | METHOD

FIG. 16

U.S. Patent Jul. 28, 2015 Sheet 18 of 39 US 9,094,186 B2

M Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY INNER | FIELD | CONSTR | METHOD DETAIL FIELD | CONSTR | METHOD

Interface SubCarrier 1702

public interface SubCarrier

The SubCarrier class is the lowest level (aside from the physical layer) of an IBOC
transmission. Multiple SubCarriers are grouped together to form a SubChannel.
SubCarriers have a Suali of Service ((%oS) rating that describes the reliability of the
carrier. Generally, the higher the QoS rating, the lower the reliability of the carrier.

Method Summary

void | clear () 1704
Returns the carrier to “pristine” condition for return to the pool.

int | getQoSRating () 1706

Gets the Quality of Service (QoS) rating of the SubCarrier
int | read (byte] b, int len) 1708

Reads up to len bytes off of the carrier into byte-array b.

int | write (byte []b) 1710
Writes up to b.length bytes on the carrier from byte-array b.

Method Detail

getQoSRating 1712

public int getQoSRating ()

Gets the Quality of Service (QoS) rating of the SubCarrier
Returns:
the carrier’s rating

read 1714

public int read(byte[] b.
int len)

FIG. 17A

U.S. Patent Jul. 28, 2015 Sheet 19 of 39 US 9,094,186 B2

Reads up to len bytes off of the carrier into byte-array b
Parameters:
b - array to be gopulated with the bytes read
len - number of bytes requested to be read
Returns:
the number of bytes actually read

write 1716

public int write (byte[] b)
Writes up to b.length bytes on to the carrier from byte-array b.
Parameters:
b - an array of bytes to be written
Returns:
the number of bytes actually written

clear 1718

public void clear ()
Returns the carrier to “pristine” condition for return to the pool.

Tree Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY INNER | FIELD | CONSTR | METHOD DETAIL FIELD | CONSTR | METHOD

FIG. 17B

U.S. Patent Jul. 28, 2015 Sheet 20 of 39 US 9,094,186 B2

Tree Deprecated Index Help

PREV CLASS NEXT CLASS ERAMES NO FRAMES
SUMMARY INNER | FIELD | CONSTR | METHOD DETAIL FIELD | CONSTR | METHOD

Interface SubCarrierFactory 1802

public interface SubCarrierFactory

An instance of SubCarrierFactory is used to create SubCarriers that comprise a SubChannel.

Method Summary

SubCarrier | newSubCarrier (int rating) 1804
Create a new SubCarrier with the specified Quality of Service (QoS) rating.

Method Detail
newSubCarrier 1806

public SubCarrier newSubCarrier (int rating)

Create a new SubCarrier with the specified Quality of Service (QoS) rating.
Parameters:

rating - the level of reliability
Returns:

a SubCarrier object with the specified rating

m Deprecated Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY INNER | FIELD | CONSTR | METHOD DETAIL FIELD | CONSTR | METHOD

FIG. 18

U.S. Patent Jul. 28, 2015 Sheet 21 of 39 US 9,094,186 B2

Tree Deprecated Index Help

PREV CLASS NEXT CLA FRAMES NO FRAMES
SUMMARY INNER | FIELD | CONSTR | METHOD DETAIL FIELD | CONSTR | METHOD

Interface SubCarrierPool 1902

public interface SubCarrierPool

The interface by which subcarriers can be locked/unlocked for use by a subchannel. The
storage of a predefined amount of subcarrier ob'jects in this pool prevents unnecessary
reconstruction and garbage collection. All implementing classes should provide at least
one constructor with a single argument of type int and constructs this many SubCarrier
objects to hold in a Collection.

Method Summary

void | checkIn (SubCarrier subc) 1904
A method to notify the pool that subc is available for checkout.

SubCarrier | checkOut (int qosRating) 1906

Returns a Subcarrier object with a quality of service rating matching
qosRating after removing it from the pool.

int[] | getAvailableRatings () 1908
Returns an array of ints matching the quality of service of each
subcarrier currently in the pool

int | getCount () 1910
Returns the size of the pool

Method Detail

checkQOut

public SubCarrier checkOut (int gosRating) 1912
throws java.lang.Exception

Returns a Subcarrier object with a quality of service rating matching qosRating
after removing it from the pool
Parameters:

gosRating - the quality of service rating of the subcarrier
Throws:

java.lang.Exception - when a subcarrier with qosRating is unavailable

FIG. 19A

U.S. Patent Jul. 28, 2015 Sheet 22 of 39 US 9,094,186 B2

checklIn

public void checkIn (SubCarrier subc) 1914
throws java.lang.Exception

A method to notify the pool that subc is available for checkout
Parameters:
subc - the subcarrier ready to be checked in
Throws:
java.lang.Exception - when a subcarrier of the same quality of service exists
1n the pool already

getAvailable Ratings 1916
public int [] getAvailableRatings ()

Returns an array of ints matching the quality of service of each subcarrier currently
in the pool.

getCount 1918

public int getCount ()
Returns the size of the pool.

0L Tree Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY INNER | FIELD | CONSTR | METHCD DETAIL FIELD | CONSTR | METHOD

FIG. 19B

U.S. Patent Jul. 28, 2015 Sheet 23 of 39 US 9,094,186 B2

Tree Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY INNER | FIELD | CONSTR | METHOD DETAIL FIELD | CONSTR | METHOD

Interface SubChannel 2002

public interface SubChannel

Transport mechanism used by data services to send data. It is also use by receiving
devices to read data sent by a data service.

Method Summary

int[]| destory () 2004
perform any cleanup work required to destroy the channel

java.io.InputStream | getInputStream () 2006
Gets the output Stream used to read data from the channel

java.io.OutputStream | getOutputStream () 2008
Gets the output Stream used to send data to the channel

-

in

getQosLevel () 2010
Gets the Quality of Service level of the channel

Method Detail
getOutputStream 2012

public java.io.OutputStream getOutputStream ()
throws java.i0.IOException

Gets the output Stream used to send data to the channel
Throws:

java.io.IOException - if the OutputStream cannot be returned

getlnputStream 2014

public java.io.InputStream %etlnpu_tStre_am (%
throws java.io.IOException

Gets the output Stream used to read data from the channel

FIG. 20A

U.S. Patent Jul. 28, 2015 Sheet 24 of 39 US 9,094,186 B2

Throws:
java.io.IOException - if the OQutputStream cannot be returned

getQosLevel 2016
public int getQosLevel ()

Gets the Quality of Servicelevel of the channel

destroy 2018

public int () destroy ()
Eerfonn any cleanup work required to destroy the channel
eturns:
an array integers that determine the sub-carriers that compose this channel.

Tree Deprecated Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY INNER | FIELD | CONSTR | METHOD DETAIL FIELD | CONSTR | METHQD

FiG. 20B

U.S. Patent Jul. 28, 2015 Sheet 25 of 39 US 9,094,186 B2

M Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY INNER | FIELD | CONSTR | METHOD DETAIL FIELD | CONSTR | METHOD

Interface SubChannelFactory 2102

public interface SubChannelFactory

Factory class for creating new subChannels

Method Summary

SubChannelFactory | newSubChannel (SubCarrier [] subcars) 2104
method for creating a new subchannel

Method Detail

newSubChannel

public SubChannel newSubChannel (SubCarrier [| subcars) 2106
throws java.lang.Exception

method for creating a new subchannel

Parameters: .

Th subcars - an array of Subcarriers used to compose the new sub channel
TOWS:
java.lang.Exception - if the Subchannel cannot be created

m Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY INNER | FIELD | CONSTR | METHOD DETAIL FIELD | CONSTR | METHOD

FIG. 21

U.S. Patent

Jul. 28, 2015 Sheet 26 of 39

m Deprecated Index Help

PREV CLASS NEXT CLASS
SUMMARY INNER | FIELD | CONSTR | METHOD

US 9,094,186 B2

FRAMES NQ FRAMES
DETAIL FIELD | CONSTR | METHOD

Interface Service 2202

public interface Service

Method Summary

void

Authenticate (DeviceKey dKey) 2204

java.io.InputStream

getInputStream () 2206

java.io.OutputStream

getOutputStream () 2208

ServiceMetaData

(=

getServiceMetaData () 2210

void

(o]

getServiceMetaData () 2212

Method Detail

getServiceMetaData 2214
public ServiceMetaData getServiceMetaData ()

getServiceMetaData 2216

public void getServiceMetaData ()

getOutputStream

2218

public java.io.OutputStream getOutputStream ()

throws java.io.IOException

Gets the output Stream used to read data from the channel

FIG. 22A

U.S. Patent Jul. 28, 2015 Sheet 27 of 39 US 9,094,186 B2

getInputStream 2220

public java.io.InputStream %letlnpthtrqam (%)
throws java.io.IQException

Authenticate 2222

public void Authenticate (DeviceKey dKey)
throws java.lang.Exception

Tree Deprecated Index Help

PREV CLASS NEXT ClASS FRAMES NO FRAMES
SUMMARY INNER | FIELD | CONSTR | METHOD DETAIL FIELD | CONSTR | METHOD

FIG. 22B

U.S. Patent Jul. 28, 2015 Sheet 28 of 39 US 9,094,186 B2

Tree Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY INNER | FIELD | CONSTR | METHOD DETAIL FIELD | CONSTR | METHOD

Interface ServiceListener 2302

public interface ServiceListener

Implementations of this interface are responsible for delegating the construction
of subchannel objects and handing them off to the apgropriate andler objects. This
requires access to both the SubcarrierPool and the SubchannelFactory.

Method Summary

Service []| getServices () 2304
returns an array of the services that are actively being received

Method Detail
getServices 2306

public Service[] getServices ()
returns an array of the services that are actively being received

Tree Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY INNER | FIELD | CONSTR | METHOD DETAIL FIELD | CONSTR | METHOD

FIG. 23

U.S. Patent

Jul. 28, 2015 Sheet 29 of 39

'_['gg Deprecated Index Help
PREV CLASS NEXT CLASS
SUMMARY INNER | FIELD | CONSTR | METHQD

US 9,094,186 B2

ERAMES NO FRAMES
DETAIL FIELD | CONSTR | METHOD

Interface ServiceMetaData

2402

public interface ServiceMetaData

Method Summary

int

getCategory (int level) 2404

int

getContentRating () 2406

-

in

getDataSize () 2408

int

getDataSizeMagnitude () 2410

byte[]

getDomainlID () 2412

~

in

getEventlndicator () 2414

Lo d

in

getGroupID () 2416

—

in

getMimeType () 2418

long

getReceiverTimeStamp () 2420

int

getReservedBits () 2422

long

getSenderTimeStamp () 2424

—

in

getStatusBits () 2426

~—

in

getSyncCue () 2428

void

setReceiverTimeStamp (long tStamp) 2430

FIG. 24A

U.S. Patent Jul. 28, 2015 Sheet 30 of 39

US 9,094,186 B2

Method Detail

getSyncCue
public int getSyncCue ()

getSenderTimeStamp
public long getSenderTimeStamp ()

setReceiverTimeStamp

public void setReceiverTimeStamp (long tStamp)

getReceiver TimeStamp

public long getReceiverTimeStamp ()

getDomainlD
public byte [] getDomainID ()

getContentRating
public int getContentRating ()

getCategory
public int getCategory (int level)

getDataSize
public int getDataSize ()

FIG. 24B

U.S. Patent Jul. 28, 2015 Sheet 31 of 39 US 9,094,186 B2

getDataSizeMagnitude
public int getDataSizeMagnitude ()

getReservedBits
public int getReservedBits ()

getStatusBits
public int getStatusBits ()

getEventIndicator

public int getEventIndicator (int level)

getGrouplD
public int getGroupID ()

getMimeType
public int getMimeType ()

Tree Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NQ FRAMES
SUMMARY INNER | FIELD | CONSTR | METHOD DETAIL FIELD | CONSTR | METHOD

FIG. 24C

U.S. Patent

Jul. 28, 2015 Sheet 32 of 39

{

WAIT FOR START CUE
2502

NO

START RECORDING CUE?

2504

START RECORDING MAIN
AUDIO CHANNEL
2506

!

WAIT FOR END CUE
2508

US 9,094,186 B2

USING SYNCHRONIZATION CUE TO CREATE AUDIO CUL-DE-SAC

2500
/

T

NO

CHECK MEMORY BUFFER
2512

BUFFER FULL?
2514

4

f

Y

MARK FILE WITH SYNCHRONIZATION CUE
2516

Y

SAVE FILE IN CACHE
2518

Y
DONE

FIG. 25

U.S. Patent

Jul. 28, 2015 Sheet 33 of 39

US 9,094,186 B2

USING SYNCHRONIZATION CUE TO TRIGGER AN AUDIO CUL-DE-SAC

|

WAIT FOR START CUE

2610 D

START PLAYING
CUE RECEIVED?

2620

READ FILE ID
FROM CUE MESSAGE

2630

Y

SEARCH FOR FILE WITH MATCHING ID
IN RECEIVER DATA STORE
2640

FILE FOUND?
2650

PLAY AUDIO CUL-DE-SAC FILE
2660

Y
DONE

FIG. 26

2600
/

US 9,094,186 B2

Sheet 34 of 39

Jul. 28, 2015

U.S. Patent

¢ Old
Q1 ¥OLYDIANI 3DIAY3S NI SLig 40 ¥3gWnN = H1ONTg
(s}, HLONTg =)
(CH+4g - 86+ig) (084 - ¥9+lg) (8rig - €E¥lg) (g - 14lg) (g - 89g) (£9g- ¥9g)
NOILISOd NOILISOd NOILISOd NOILISOd YSVIN INNOD
ONIONIZ30IAY3S ONILYVIS23DIAY3S ONION3 | 3DIANIS ONILYVLS | 3DIAY3S 30IAY3S 30IAY3S = (S)D
0000 100k OLLL 1100 1000 LOKO LiLL BOOO 0000 LOLO LLLL LOOD 00O LOGO 00000000 | 10000000 0100 0000 0100
VAVQ ¥3QVIH 31dWYS
30IAY3S 3HL ¥O4 NOILISOd LVHL NI 1SVOavous IHLNI
118 ONIANI ANV ONINNI938 IHL S18IX3 1VHL 30IAY3S THL @3aNIVINOD S3DIAY3S 40
S31YDIANI 3DIAY3S HOVI ¥O4 S3LYIIANT I9IAN3S HOVI HO4 HIFWNN FHL SILYDION!
02
1NNOD
W02 | NOIYIOT130IAN3S NSVIN FOIANIS NS
AQ08 ¥3aV3H TINNYHD

US 9,094,186 B2

Sheet 35 of 39

‘J19VIIVAY SYIHEVI-ANS 40
H3I8ANN 3HL OL 31YNOILYOdO¥d
A1L03410 S| ¥3AH3S JHL ONINIZ3]

8¢ Oid

QI YOLYOIQNI 3IAY3S NI SLIg 40 ¥y3awnN = HLONT g

1HS)0C »

HLONI g - |

Jul. 28, 2015

U.S. Patent

01 G31¥Dia3a SLig 30 ¥3AGWNN 3HL
(1g - 89g) (£9g - ¥9g)
(8v+)g - C€+g) (OlHig - I ig) MSVW INNOD
SNOILISOd 2 30IA¥3S SNOILISOd | 3IAY3S 30IAN3S 30IA43S = ()
0000 1010 LLLL 1000 LILL OLOL 0000 OLLL | 1000 0000 0100 0000 0100
V1va ¥3aV3H 31dWVS
3DIAY3S JHL ¥O4 NOILISOd LVHL NI 1SY0avoug HLNI
118 ONIGNI ONV ONINNI938 3HL $1SIX3 IVH1 30IA43S 3HL G3ANIVLNOD S3DIAY3S 40
S3LVOIANI 3DIAN3S HOV3I HO4 S3IVIIANI 39IANIS HOYS 404 U3FWNN FHL SLYIIONI
2082
NOILYD0T 30IAY3S NSV JDIAY3S wnﬂ»mmm
(aOHL3W SOD ¥O4 a3iIaow)
AQOS ¥3AY3H TANNVHO

US 9,094,186 B2

Sheet 36 of 39

Jul. 28, 2015

U.S. Patent

62 "9Id

£16¢
v.ivad
30IAY3S av3ad

Y

vi6e
ASVN JOIAY3S |
IX3INOL 0O S3A

ON

¢l6¢
(SIHOLVA

I16¢ 116¢

ASYIN -
JOINYISIXIN [xm%wgmm_%wo

LSHI4 0L 09 T

MSVI JOIAY3IS ;
15414 0L 09 ¢0<LNNOJD 30IAY3S

\ O4NI ¥3AaV3H NI S118 INNOD 3JIAY3S Qv _

‘ASVYIN 3OIAYS JHL

U,

IHL 40 321S 1i8 3Rl H3avan 3ZIS AQ0d wm_o._.w ANV av3d
3H1 40 3ZIS 118 TIVH3A0 JHL

N SV S NOLLYIOINI 37IS ¥3aV3H 3HOLS ANV avay

4

0019 NOLLYWHO4NI ¥30v3H av3y

_ Q1 ¥30v3H 13NNVHO 3401S ANV av3y _
V1vad TINNVHO d3avaH ONIav3d

US 9,094,186 B2

Sheet 37 of 39

Jul. 28, 2015

U.S. Patent

0€ "Old _AHOWIWN W3LSAS 40 MZIS LSV LY ONY
TINNVHO-MOVE Q3-INDIY V VIA YHOMLIN
TYNY31X3 OL LOANNOD OL ¥3SN JHL
MOTIV LVHL SAILNIGVdvD LNdNI ‘SNITHOS
A SRS S e
"G3HONDI SI O H3AIAOHd WON4
V1VQ ‘9 %2V SU3AIAOHd 9 ¥3dIA0Hd V1va
WO¥4 V.LVA 40 ONITANVH
SMOTIV XSYW 30IA3a
(ON3 HOIH) ¥3AI303Y ¥VD
_ o
LIN3INOD IHL HONOYHL
39vd OL ¥3SN IHL MOTTV
SUBLOVEVHD 66 LSwar] 1Y 30
. 4
omm.mamcmmw%_mwﬁ_ _w,_wm_“m__ HLO d3IMoL SAILNIBYAYD LNdLNO HLIM
AINO Y.1VQ 40 ONIMANVH olavy HOSS300ud S30IA3A ¥O4 I18VLINS
SMOTTV ¥SVYIN 30IA30 aval SIDIAYIS 1X31 DUV
(GN3 MOT) ¥3AI3D3Y ¥V b 8 ¥30INO¥d YIva
EOooSE o600 o ____:__________________.. =
=
zomn_&m& 2 ONPCNYH *J.
Y IA3G ZAXM NOILYLS 0Iavy S31LMISVdYD LNdLNO 1X31 HLIM
SMoT dﬂm_g 30 S32IA3A 1V ¥O4 318VLINS
SIDIAY3S LX3AL TIVAS
V ¥30IA0¥d VIVa
OIMYNIIS MSYW H3 1114

US 9,094,186 B2

Sheet 38 of 39

Jul. 28, 2015

U.S. Patent

b€ "Old UOLINOW VOAS - 91 1A

T - "

Od - 9} 13ATT - :
] . . A0 TIVNS - ¥ 13A31
. lsv4¥3dns-9l d.>m._ %SI1Q QY¥VH o._ 1A : >o<m_~_>m.m_,um,__m R4

(01aveND0T0) LINN * : : SUIND ASNOW - € 13ATT
INIWNIVLYIINT IWOH - 2 13A31 1SV4 -2 13AT] GWZ =>-2713A31 SINdNION/SIA-ZT3A3T HILIVUVHO ¢€ <-¢ 13AT1
W OTa NOR-OEAT Seo-0 T CuvMROIOYE- L AT HAORNAIEE S L T
- - "V - - -
d13HANY =L Flgment LN ON - 0 AT T AV1dSI0 ON -0 T3A3T
SI1dNYXI STTdWYXI ONISSIOONd IOVHOLS/AHOWIW SI1dAVX3 LNdNI ST dWYXT LNdLNO
Q3AY3ISIALYAIN TYANIANOXIAND 69q .8 19g.26g 16g. 9l (Ghg-Og)
[+8.+1g - 8L+l Lilg.0L+lg T3ATTONISSINON | JOVHOLS/ANOWIW T3A3T LNdNI 13A31LNdLNO
Q3AY3ISIALYAIN INJWNOXIANI
10L0 " 0L0L 0000 LOOO 0000 0000 | 0000 L0CD 0000 0000 | 0000 LOOO 0600 0000 | 0000 LOOO G000 0000 1000 0000 0400 0000
[Zhg e orre g0I€ 801E
NSV 3D1A30 31dNVS
AV1dsSIia
3HL 30 NOILYDILSIHAOS 3HL 04
SY343Y SIHL IWIL IHL 40 1SOW

"39IA3Q 3HL 40 SIILAIGYIVD

1NdLNO0 FHL STIVIIONI

"301A30 IHL 40 INTWNOUIANT | | "321A3Q 3HL 4O SAILNMIgYdYD
ONILVYIdO JHL STLVDIONI JOVHOLS ¥O AYONIW FHL NOILOVHLNI 404
T7VIVAY SYH ¥3SN FHL ANV 4
"30IA30 3HL 40 mu_o\,_wm Mmm “_hoZ mmuw_m__ﬁ,\w_
3SN VAN ¥O4 G3ANISIY HIMOJ ONISSIOONY THL \30 SHL 40 S IR
901€ GOIE 71159 g0 101E 01€
Q3IAYISIUALVAIY | INTFWNOMIANT T13AITONISSID0Ud | IOVHOLS/ANOWINW 13A37 LNdNI J3A31 1NdLNO
FUNLONHLS YSYW 30IA3Q

US 9,094,186 B2

Sheet 39 of 39

Jul. 28, 2015

U.S. Patent

c

€ Old

0000 0000 0000 0000 | 0100
| 0001 0000 0000 0000 | 0100

30IA30/H3AI303Y

0000 0000 0000 { 0100 0000 0000 0000
0000 0000 000 | 000F 0000 0000 0000
NSV 331A3d

>

10ce

U-| WW3HIS VIVQ
404 JININVX3

S| NOILYWHOJNI
MSVI 3DIAY3S
QONY Q3S4vd
SINVIYLS ¥3AVIH

NOSINVANOD YSYIN 3DIAIA/3DIAYIS 40 STTdWVXT E
502¢ =
118 FIONOI e
/1d300V Q
@ Z02¢ w
3| ¢ 00000000« @IAMISIY 00000000<- @IAYISIA 2
=| 1 10000000<-INJWNOHIANT 1000 0000<-ANINNOMIANS @
M| | 0001 0000< ONISSIOONd b} 0000<- ONISSIOONd S
z 0010 0000<- _ J9VHOLS 00L00000<- J9VMOLS N\
Z| V' 01000000< TIAITINGNI 0LL00000<- T3AITINGNI
21 4 000 1000<-13ATTLAALNO 00LL L000<-13ATT LNALNO | | U ¥SVIN 301AN3S
SaNTVA
193dSy YSVIN 30IA3Q NSV 30IAY3S .
v0ce (3D1A3Q HOX 3DIAN3S)
00T ZSVIN 3DIAY3S
L YSVIN 30IAY3S

_____________.

NOSIHVANOI XSVIN 3DIAIA/IDNAGTS

US 9,094,186 B2

1
SYSTEM AND METHOD FOR
TRANSMITTING DIGITAL MULTIMEDIA
DATA WITH ANALOG BROADCAST DATA

PRIORITY APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 10/484,518 filed Dec. 2, 2004, now U.S. Pat. No.
8,396,100, which is hereby incorporated by reference in its
entirety.

The *518 application claims priority under 35 U.S.C. §119
to U.S. Provisional Patent Application Ser. No. 60/306,080
entitled “EXTERNAL NETWORK INTERFACE” filed in
the name of Paul Signorelli on Jul. 17, 2001; and further is a
continuation-in-part of U.S. patent application Ser. No.
09/839,451 entitled “SYSTEM AND METHOD FOR GEN-
ERATING MULTIMEDIA ACCOMPANIMENTS TO
BROADCAST DATA” filed in the name of David Corts et al.
on Apr. 20, 2001, now U.S. Pat. No. 7,908,172, which is a
continuation-in-part of U.S. patent application Ser. No.
09/802,469 filed on Mar. 9, 2001 which, in turn, claims pri-
ority to U.S. Provisional Patent Application Ser. No. 60/188,
050 filed on Mar. 9, 2000; this application is further related to
U.S. Patent Application Ser. No. 60/346,785 entitled “SYS-
TEM AND METHOD FOR ASSEMBLING SUPPLEMEN-
TAL DIGITAL DATA TO BE BROADCAST ON AN SIDE-
BAND OF AN ANALOG BROADCAST” filed in the name
of David Corts et al. on Jan. 7, 2002; and U.S. Patent Appli-
cation Ser. No. 60/346,784 entitled “SYSTEM AND APPA-
RATUS FOR TRANSMITTING DIGITAL MULTIMEDIA
DATA WITH ANALOG BROADCAST DATA” filed in the
name of David Corts et al. on Jan. 7, 2002, the entirety of each
of these applications being incorporated herein by reference.

FIELD OF THE INVENTION

The present invention is directed generally to multiplex
communications, and more particularly to communicating
messages over free space (i.e. a radio frequency (RF) side-
band/sub-carrier or frequency mask) for reception at multiple
destinations.

BACKGROUND OF THE INVENTION

In-Band On-Channel (IBOC) broadcasting is an emerging
Digital Audio Broadcasting (DAB) technology, developed by
IBIQUITY DIGITAL, INC., that enables existing radio
broadcasters to transmit digital data over current analog trans-
mission frequencies. Such radio broadcasters commonly
employ amplitude-modulated (AM) and frequency-modu-
lated (FM) bands for the transmission of audio broadcast data.
IBOC technology has the ability to create a “hybrid” signal
that can simultaneously send both the analog and digital data.
U.S. Pat. No. 5,757,854, incorporated in its entirety herein by
reference, discusses these capabilities in greater detail.

Digital data may be digitally-formatted data or digitally
compressed analog data. Digital data may include processing
instructions for rendering visual and/or audio components on,
for example, an IBOC receiver. Such processing instructions
may be used to render synchronized visual components, such
as text and images describing artist or song title information
for currently-broadcast songs on the analog band, news head-
lines, traffic reports or other information that would be of
interest to a radio listener. The digital data may include audio
components for presenting selectable audio data.

In an IBOC network, IBOC receivers recognize analog and
digital data broadcast by IBOC transmitters, and present such

10

35

40

45

50

55

65

2

data to a user through a display and/or an audio output. The
user may interact with the data and provide a response via the
IBOC receiver to either a party operating the IBOC transmit-
ter or a third party. Additional examples of digital data and its
uses are described in the previously incorporated *172 patent.
In order to accommodate these various IBOC network
functionalities, a protocol for the assembly, transmission and
synchronization of such digital data is described.

SUMMARY OF THE INVENTION

The present invention relates to the data formats used to
transmit digital data over traditional analog bands and other
features enabled by IBOC technology.

One aspect of the present invention relates to the transmis-
sion of digital data, such as digital audio data, over pre-
defined channels, such as AM or FM channels using known
radio broadcast equipment.

Another aspect of the present invention relates to the suc-
cessful transmission of digital data over analog bands using
various synchronization protocols between the sender and the
receiver.

Still another aspect of the present invention relates to pro-
viding sufficient security for the digital transmission so as to
prevent the tampering or corruption of data by an outside
source. The security process involves various encryption pro-
tocols and authentication procedures. Yet another aspect of
the present invention relates to the transmission of a response
from an IBOC receiver to an appropriate operation handler.
Such operation handler may be a native handler, wherein an
embedded module or procedure exists to service the request.
In another embodiment the appropriate operation handler
may be a non-native handler, wherein the service request is
transmitted to another device for handling.

Still another aspect of the present invention relates to the
creation of a Quality-of-Service (QOS) system, wherein a
group of RF carrier bands is created around each central
frequency available for broadcast. Since the reliability of data
transmission decreases with RF carriers further from the cen-
tral frequency, these RF carriers may be grouped according to
the volume of data that can be successfully accommodated
within a predetermined time. For example, digital data cor-
responding to a real-time sporting event (which may require
continuous updates of digital data) may be transmitted over a
more-reliable, high-volume RF carrier or set of RF carriers,
while digital data corresponding to a weather report that is
updated only every hour may be repeatedly transmitted over
a less-reliable, low-volume or set of RF carriers to insure
reception of all required digital data.

BRIEF DESCRIPTION OF THE DRAWINGS

Further aspects of the instant invention will be more readily
appreciated upon review of the detailed description of the
preferred embodiments included below when taken in con-
junction with the accompanying drawings, of which:

FIG. 1 is an of an exemplary IBOC network including
transmitters, receivers and third party service providers;

FIG. 2 is a diagram depicting an exemplary flow of infor-
mation between the devices shown in FIG. 1;

FIG. 3 is a block diagram of an exemplary data format used
in the transmission of digital data over the IBOC network of
FIG. 1,

FIG. 4 is a block diagram of an exemplary organization
data for the format of FIG. 3;

US 9,094,186 B2

3

FIG. 5 is a flowchart depicting an exemplary process for
invoking a user agent handler to accomplish the reception of
digital data;

FIG. 6 is a flowchart depicting an exemplary process for
operating the user agent handler of FIG. 5;

FIG. 7-7B is a flowchart depicting an exemplary process
for providing a request over the IBOC network;

FIG. 8 is a flowchart depicting an exemplary process for
invoking the service handler to accomplish a request;

FIG. 9 is a flowchart depicting an exemplary process for
validating a message transmitted through the IBOC network;

FIG. 10 is a block diagram of exemplary hardware and
software used for message authentication with a one-way
hash function;

FIG. 11 is a flowchart depicting an exemplary process for
authenticating data received over the IBOC network;

FIG. 12 is a block diagram depicting an exemplary data
structure for an authentication header;

FIG. 13 is a block diagram depicting an exemplary data
structure for accommodating synchronization of digital and
audio data;

FIG. 14 is a flowchart depicting exemplary operation of a
static Quality-of-Service manager;

FIG. 15 is a flowchart depicting exemplary operation of an
active Quality-of-Service manager;

FIG. 16 is a depiction of an exemplary JAVASCRIPT mod-
ule for the Quality-of-Service manager;

FIG. 17A-B are depictions of an exemplary RF carrier
javascript module;

FIG. 18 is a depiction of an exemplary RF carrier Factory
javascript module;

FIG.19A-B are depictions of an exemplary RF carrier Pool
javascript module;

FIG. 20A-B are depictions of an exemplary Sub-channel
javascript module;

FIG. 21 is a depiction of an exemplary Sub-channelFactory
javascript module;

FIG. 22A-B are depictions of an exemplary Service java-
script module;

FIG. 23 is a description of the Servicel.istenerjavascript
module;

FIG. 24A-C are descriptions of the ServiceMetaDatajava-
script module;

FIG. 25 is a flowchart depicting an exemplary process for
using a synchronization cue to create an audio cul-de-sac; and

FIG. 26 is a flowchart depicting an exemplary process for
using a synchronization cue to trigger an audio cul-de-sac.

FIG. 27 is an illustration depicting an exemplary channel
header body and service mask;

FIG. 28 is an illustration depicting an exemplary channel
header body and a Quality of Service filter mask;

FIG. 29 is an illustration depicting an exemplary process-
ing of filter masks;

FIG. 30 further illustrates one non-limiting example of the
practical effects of employing service masks;

FIG. 31 illustrates another non-limiting example embodi-
ment of a device mask; and

FIG. 32 illustrates one non-limiting example of the com-
parison of service and device masks.

10

15

20

25

30

35

40

45

50

55

60

65

4

DETAILED DESCRIPTIONS OF THE
INVENTION

Broadcast Data

In one non-limiting example embodiment of broadcast
data, a given radio frequency may carry the following infor-
mation: a streamed analog broadcast, and an analog sub-
carrier data, and/or the like.

Sub-carrier data is generally small text or numeric infor-
mation. The sub-carrier data is carried on a standardized set of
RF frequencies using any number of standard transmission
technologies.

An RF carrier is a single carrier frequency on an AM or FM
radio channel capable of carrying n-bits of data For example,
one RF carrier may carry 4 bits or 8 bits of data. RF carriers
have varying degrees of robustness. The robustness of an RF
carrier can relate to one or more factors including distortion
from adjacent radio frequencies and distortion from the ana-
log carrier on the same channel. To overcome this, on RF
carriers with lower robustness, data can be given a greater
emphasis on error correction. This can include looping (re-
transmitting) data, using forward error correction techniques,
and interleaving the data. Applying more error correction data
has the effect of reducing the bandwidth. The robustness of a
given RF carrier for a particular broadcast facility can be
reasonably estimated and predicted. Consequently, over a
given period of time, the bandwidth contribution of a single
RF carrier or a series of RF carriers for a broadcast facility can
be calculated.

With the advent of IBOC a given radio frequency will
continueto carry astreamed analog broadcast, but also has the
ability to have one or more streamed digital audio broadcasts
aswell. At least one of the digital audio broadcasts is intended
to be a digital duplication of the analog audio broadcast. On
top of that, the IBOC system allows for the transmission of
binary and ASCII files, and the streaming of text and numeric
information with the digital audio. Analog sub-carriers can
co-exist with the new digital IBOC information on the RF
carriers as well. Thus, at any given time a radio broadcaster
could have a single streamed analog audio broadcast, one or
more streamed digital audio broadcasts, a series of text and
numeric information streamed with digital audio, any number
of binary and ASCII files, sub-carrier data, and/or the like.
Any of these can be considered broadcast data.

Furthermore, the streamed text and numeric information
can carry instructions and data to be rendered to the receiver.
The binary and ASCII files can be multimedia data such as
textual file formats (e.g., ASCII plain text, rich text, html,
xml, and/or the like), audio file formats, graphic file formats,
video file formats (e.g. MPEGs, MP3s, JPGs, GIFs, and/or
the like), multimedia file formats, and/or the like. These files
can also be mark-up or instructions to an application on the
receiver.

Trigger Event

Inone non-limiting example embodiment, a trigger event is
an event that occurs on the receiver that causes an action to
occur. The action that occurs can be any action available to the
receiver. Examples of receiver actions are displaying data,
playing an audio file, recording the main program audio
stream, pulling data from the storage, and/or the like. If the
receiver also has a two-way communication channel associ-
ated with it, then the action could initiate communication on
this second channel. In one implementation, there are three
types of trigger events: a broadcast event, a system event, and
a user event. A broadcast trigger event occurs via the broad-
cast itself. A broadcast trigger event associates a receiver
action with some element of broadcast data. For example, it

US 9,094,186 B2

5

could be an event associated with the audio stream (analog or
digital) that can be used to synchronize program audio and
data. It could be an event associated with a particular time
kept by the broadcaster. This could be used to tell the receiver
and/or user that it is the start of the 7 A.M. broadcast hour or
that it is 7 A.M. according to the National Institute of Stan-
dards and Technology.

A system event occurs when a receiver condition is met.
System events can be the time kept by the receiver, the loca-
tion of the receiver, and a signal receiver from a separate
communication channel. For example, a system event can
occur when a receiver in a car with a navigation system
receives a notification from the navigation system as to the
location of the vehicle. In such an example, the receiver can
request a regional ad query so that regional advertising would
be scheduled with broadcast data.

A user event is initiated through the receiver by the user. A
user event could be the pressing of a button on the receiver or
even a voice command issued by the driver.

Trigger events operate similarly. When they occur, they
engaged associated actions.

FIG. 1 provides an overview of an exemplary IBOC com-
munication network 100. A service provider 110 sends for-
matted digital data suitable for transmission to IBOC trans-
mitter 120. The IBOC-formatted data may also be transmitted
over other types of networks, such as a co-axial network or a
fiber optic network. The IBOC transmitter 120 may then
transmit the digital data, as well as analog audio data, over a
wireless network to a plurality of IBOC user devices 140. The
IBOC user device 140 may be an analog/digital radio
receiver. The IBOC user device 140 may be configured to
receive IBOC formatted data in addition to other data formats,
such as wireless access protocol (WAP) formats. As seen in
FIG. 1, the IBOC user device 140 may possess an external
service interface, which allows it to receive data from a third
party external network service 130, that may or may not be
configured to transmit IBOC formatted data.

FIG. 2 is a diagram of the operation of the IBOC system in
one embodiment. The data provider 210 is analogous to the
service provider 110 of FIG. 1, which assembles and distrib-
utes the digital data for IBOC transmission. The digital data is
then sent over a dedicated gateway link 220 to a broadcaster
230. The gateway link 220 may be a wireless link, such as a
cellular link, or a may be a non-wireless connection such as a
fiber optic link. In the IBOC scheme, the broadcaster 230 may
be an existing radio broadcaster. By using existing broadcast-
ers, new hardware for accomplishing radio transmission need
not be introduced during the implementation of the IBOC
system. The IBOC formatted digital data is then transmitted
wirelessly to the receiver device 270 using traditional fre-
quencies in the AM or FM band.

Besides transmitting through radio frequencies over exist-
ing networks, IBOC formatted data may also be transmitted
over an intermediate entity 250. The intermediate entity 250
may be a telematics network, the internet, a cellular network,
or a number of other data networks. Data going through this
intermediate network 250 is transmitted wirelessly to the
IBOC user device 270.

FIG. 3 is an example of the organization of digital data into
a format for IBOC transmission. Elements 310-340 represent
block headers that are transmitted prior to the payload digital
data 350, such as digital audio data to be rendered for a user
of the user device 140. The first part of the block header is
datatype filter 310, which provides information on the type of
data in the payload, such as audio data, visual or textual data,

20

35

40

45

50

55

60

65

6

such as song title or artist name, or any number of other digital
communication that can occur during the operation of the
system.
Filter Masks

To better understand the channel headers, it is useful to
understand the power and flexibility of filter masks. A filter
mask is information that may be embodied in a “tag” that is
assigned to data from a data service. This tagged filter mask
may be used by a receiving device to either accept or reject
various forms of data. In one non-limiting example embodi-
ment, the ability and manner in which the filter mask is
employed, i.e., its capability, depends on the abilities of a
particular radio receiver. The filter mask can be and/or mask
any kind of data For example, certain devices have limited
capabilities, which would benefit from filter masks that filter
out data types that are not understood by the device. As such,
an example IBOC capable radio that had no video and/or text
display abilities might have a filter mask that enabled it to
ignore any video and/or text display information. One of the
numerous advantages to such a filter mask is that the limited
example device could simply ignore information that is
tagged for video and/or text and not expend resources to
interpret and/or process such data. Such a filter mask can also
be used to manage subscription based information; i.e., sub-
scribing customers would be allowed to view certain data
while non-subscribers would not. Thus in one non-limiting
example embodiment, a device would maintain tags repre-
senting its various abilities and/or subscriptions as a series of
tags, which would act as a filter mask, i.e., filtering informa-
tion. In such an example, broadcast data would include data in
tagged format so that it may be discerned and acted upon
appropriately. As such, when a device receives such tagged
broadcast data, the device will compare the received tagged
data to its own abilities as represented by its maintained tags.
Received tagged data that matches the devices maintained
ability tags will be processed appropriately by the device. In
one example, XML based tagging structure may be employed
for such filtering and/or tagging. For example, tagged data
may be of the form:

1<?xml version="1.0" standalone="yes”?>

<formats>

<textual>

<textual_data>Song Lyrics</textual_data>

<title>A Song Title</title>

<author>John Doe</author>

<publisher>Acme, Inc.</publisher>

<pub_year>1999</pub_year>

<subscription_information>FALSE</subscription_infor-

mation>

</textual>

<audio>

<digital_data>DATA</digital_data>

<title>A Song Title</title>

<author>John Doe</author>

<publisher>Acme, Inc.</publisher>

<pub_year>1999</pub_year>

<subscription_information>TRUE</subscription_infor-

mation>

</audio>

<video>

<digital_data>DATA</digital_data>

<title>A Song Title</title>

<author>John Doe</author>

<publisher>Acme, Inc.</publisher>

<pub_year>1999</pub_year>

<codec>MPEG4</codec>

US 9,094,186 B2

</video>

</formats>

An example device might have the following have its capa-
bilities defined as such:

<?xml version="1.0" standalone="yes”?>

<formats>

<textual><capability>FALSE</capability>

</textual>

<audio>

<capability>TRUE</capability>

<subscription_information>TRUE</subscription_infor-

mation>

</audio>

<video>

<capability>FALSE</capability>

</video>

</formats>

In such an example, as the only matching tag format types
are “audio,” only the audio “DATA” will be processed on the
receiving device. In an alternative embodiment, a device may
examine its own “capability” tags and process data based on
its abilities. In such an embodiment, if the device receives
data tagged with one of its known capabilities, such data will
be processed. The capabilities may further define a specific
kind of software requisite to process the data; i.e., a “codec”
tag may be provided so that the receiving device must contain
and/or obtain the requisite and/or specified codec (e.g.,
“MPEG4”) for processing received data. In another alterna-
tive embodiment, a device may filter information with a sub-
scription tag. In such an embodiment, if the broadcast data is
tagged with a, for example, “subscription_information”
being “TRUE” (and/or set to a password and/or some other
security information, e.g., encryption key, etc.) and the
receiving device had its subscription tag enabled with a
matching “TRUE” and/or password, then the received data
will be processed. Thus, with the above example, audio infor-
mation tagged requiring a subscription would only be played
on devices capable of producing audio and possessing an
enabled subscription tag; i.e., a subscription tag on the device
set to “TRUE” and/or the requisite password.

Such filtering allows a point-to-multipoint broadcasting
medium to provide better targeting of information to receiv-
ing devices.

In an alternative filter mask embodiment, an application is
defined. For example, an application in the IBOC world
would be “program associated data” or “PAD.” A code is
assigned to a PAD. In this way, anytime an application is
transmitted, the PAD code acts as the filter. Any receiver
designed to interpret PAD and/or associated codes would
know to look for that code and employ it as a filter.

FIGS. 27 through 32 illustrate one non-limiting example
embodiment of filter masks. A service mask is provided for
each service, and as such may occupy a variable number of
bits in a channel header body 2702 of FIG. 27. Quality of
service filtering may add to the filter mask, providing another
dimension of filtering 2802 of FIG. 28. Further, FIG. 29
illustrates that filter masks are processed as part of reading
header channel data. The received filter mask is compared to
the device filter mask (block 2911). If there is no match (at
block 2912) between the received filter mask and the device
filter mask, then the data service is read (block 2913). If there
is a match (at block 2912) or if the data service is read (block
2913), then iteration continues to the next service mask
(block 2914). If there are no more service masks (block
2915), then there is no more header channel data to read
(block 2916). If there are more service masks (block 2915),
then header channel data iteration continues by going to the

10

15

20

25

40

45

50

8

next service mask (block 2917) and again comparing the
service mask with a device mask (block 2911).

FIG. 30 further illustrates one non-limiting example of the
practical effects of employing service masks. Various data
providers A, B, and C supply their content (small text ser-
vices, large text services and interactive data services, respec-
tively) to a (iDAB) server for preparation for broadcast at a
radio station WXYZ. After a program signal is transmitted,
which now includes content from content providers A, B, and
C along with regular broadcast materials, various devices
obtain the signal and use the broadcast filter mask to enable
the displaying of content matching the device mask in a
receiving device. In one non-limiting example embodiment, a
device mask may be supplied as a software upgrade to a
device. Examples in FIG. 30 show that a PDA might be
capable of displaying content from data providers A, B, and C
because a PDA has an improved display and input capabilities
allowing for long textual and graphic display as well as inter-
action; while a low-end car receiver is capable of only dis-
playing content from data provider A as it may only have a
limited alphanumeric display capable of showing short mes-
sages; and a high-end car receiver is able to display content
from both data providers A and B because it has an enhanced
screen display allowing it to display long messages and
graphics.

FIG. 31 illustrates another non-limiting example embodi-
ment of a device mask. As is shown, input capabilities 3101,
output capabilities 3102, memory capabilities 3103, process-
ing level 3104, device type environment 3105, and various
reserved 3106 parameters may define a device mask 3107. In
one non-limiting example embodiment, the input capabilities
3108 indicate the types of interaction options available to a
user (e.g., level 0 having no interaction abilities, level 1 hav-
ing the abilities to navigate back and forth in received data,
etc.). Similarly, the output capabilities 3109 indicate the types
of output options are available data (e.g., level 0 having no
display, level 1 having less than 33 characters for display,
etc.). The memory capabilities 3110 indicate the amount of
memory the device has for storing data (e.g., level 0 having
512 Kb or less, level 1 having 1 Mb or less, etc.). The pro-
cessing level 3111 indicates the amount of computational
resources that are available to the device (e.g., level 0 being a
slow device, level 1 a medium speed processing device, etc.).
The device type environment segment 3112 of the device
mask may indicate the general environment in which the
device operates (e.g., a level O device being handheld, a level
1 device being used in a car environment, etc.) As is illus-
trated, many device and performance characteristics may be
accounted for by making additional components and/or tags
that comprise the device mask. As such, a component of the
device mask may be reserved for other purposes 3113, thus
expanding upon and providing for future operational flexibil-
ity.

FIG. 32 illustrates one non-limiting example of the com-
parison of service and device masks. A header stream is
extracted from a broadcast and parsed 3201. Upon parsing out
the various service masks, the receiving device may engage in
a bitwise comparison between the parsed service masks and
the device mask within 3202. By employing a bitwise exclu-
sive-or (XOR) function on both the service mask and the
device mask 3203, aspect values 3204 are obtained and may
be used to accept or ignore 3205 data associated with a given
service mask. Of course, numerous forms of service and
device masks may be used (e.g., the XML tag form as already
discussed), and various types of comparisons may be
employed as well.

US 9,094,186 B2

9

Channel Header Structure

Moving back to FIG. 3, the second part of the block header
is the recipient authentication 320, which provides a means
for the sender to allow only a subset of receivers to accept the
data For example, the data may be part of a subscription-only
service. Using the recipient authentication 320, the data
sender may format the digital data so that only subscriber
receivers will be able to receive and render it. The authenti-
cation process may also employ a number of protocols such as
one-way authentication, where only the sender transmits an
authentication message; two-way authentication, where the
sender transmits an authentication message and the receiver
transmits a reply authentication message; or three-way
authentication, where the sender transmits an authentication
message and the receiver transmits a reply authentication
message and the sender further transmits a reply to the receiv-
er’s reply authentication message.

The third part of the block header is the data provider
authentication 330, which provides information that the
recipient may use to confirm that the data that has been
received from an expected broadcaster. The data provider
authentication 330 may employ the same one-way, two-way,
or three-way authentication process described previously for
the recipient authentication 320.

The fourth part of the block header is the encryption infor-
mation 340, which contains information about the encryption
algorithm used to encode the digital data. The encryption
information may contain a public key or a number of other
data for a number of other encryption algorithms.

Finally, payload 350 contains the digital data that is to be
transmitted to and rendered by the IBOC user device 140.
Payload 350 may contain a plurality of sub-headers that can
be used in conjunction with the headers described in FIG. 3.

Sender time stamp 404 is a 32 bit word representing the
time the data was sent from the broadcaster 230. In this
embodiment, the time may be represented in milliseconds.
For higher accuracy, the time may be represented in tenths of
milliseconds or even nanoseconds, and the size of the sender
time stamp may be increased accordingly. The receiver time
stamp 406 is a 32 bit word analogous to the sender time stamp
404. It represents the time of the last time the data was
rendered/executed by the receiver. Like the sender time stamp
404, the receiver time stamp 406 is expressed in milliseconds,
but may be configured to more precision as the size ofthe time
stamp is increased to be more than 32 bits.

A problem present in this system that is not present in the
radio systems in the prior art is that the receiver would have to
be in synchronization with the transmitter to insure that there
is no skipping or other anomalies in audio playback. A series
of synchronization events are used to insure proper synchro-
nization, these events are contiguous series of time that are
correlated with the audio broadcast. For example, the digital
data to be rendered could be a 30-second advertising com-
mercial to be played during the first 50-second interval of a
song. A synchronization cue is used to trigger this synchro-
nization event.

The Event ID 424 is used to identify the correct synchro-
nization cues for any particular digital data Finally, User Data
432 is the executable data, such as multimedia data, to be
rendered.

Beside these fields in the header body, there are other
optional fields that may facilitate data transmission in the
present invention. Such fields include synchronization cue
field 402 which may be, for example, a sixteen-bit word that
may be used to place the data on demand so that the data can
be readily rendered at the appropriate time.

10

15

20

25

30

35

40

45

50

55

60

65

10

Another optional field is a domain identification field 408,
which may include a 4 byte long word that, in the application
for digital radio, may be used to broadcast the call letters of
the particular radio station, thereby identifying the source of
the transmission. The call letters may be “WNBC,”
“WXRQ,” “WNEW?” or any combination of four alphanu-
meric characters. These letters may be encoded as digital
information using any encoding scheme, such as the Ameri-
can Standard Code for Information Interchange (ASCII) stan-
dard.

The next block is content rating field 410, which may be a
4 bit nibble that can be used to designate a rating on the
program being broadcast. This feature allows the user to
exercise a certain degree of listener discretion to avoid certain
objectionable materials. There are 16 different ratings that
can be designated on a particular transmission, for example, a
“0001” nibble may be encoded as being intended for a general
audience, whereas a “1111” nibble may be encoded as being
intended for an adults only audience.

After content rating 410, the next block of data is content
category field 412. Currently there is a variety of program-
ming available on radio, such as music programming, broad-
casting of sporting events, talk shows, interviews, and public
addresses. A digital radio receiver has a display means such as
a liquid-crystal display (LCD) that can present information
about the category of the transmitted programming. That
information is encoded within the 5 bytes of the content
category field 412. The first byte of the content category 412
may be the most generic (i.e. music) with later bytes of the
content category field 412 being more specific (i.e. rock-n-
roll). In another example in which a sporting event is being
broadcast as analog data, the first byte of the content category
field 412 may be encoded to be “00001000” to indicate sports,
the most generic category. The second byte may be encoded
to be “00000010” to indicate that the sporting event is a Major
League Baseball game, a narrower category than the first
byte. The third byte may be encoded to be “00000001” to
indicate that the home team in the baseball game is the Yan-
kees, a category narrower still. The fourth and fifth byte, in
this example, would not be applied. The same structure can be
applied to music. When music programming is being trans-
mitted, the first byte of the content category field 412 may be
encoded to be “00100010” to indicate music, the most generic
category. The second byte may be encoded to be “00010001”
to indicate rock music, a narrower category than the first byte.
If the music being transmitted is classical music, then the
third byte may be encoded to be “00001100” to indicate
Baroque music, or other values to indicate Romantic, Medi-
eval, or Modern music, a category narrower than the second
byte. The fourth byte may be encoded to be “00110011” to
indicate that the music being transmitted is a chamber piece,
or other values to indicate an orchestral piece, a violin solo, or
any number of other types of performances. Similar catego-
ries can be designated to other types of radio programming
being transmitted, such as talk shows or public addresses.

File size number ficld 414 and file size magnitude field 418
are the next optional blocks in the header, following the
content category field 412. File size number ficld 414 may be
a 16 bit word that indicates the size of the file being sent, for
example, in kilobytes. File size magnitude field 418 may be a
2 bit word that indicates the magnitude of'the file size number
(i.e. bits, bytes, kilobytes, megabytes). The size of the file
may be obtained by examining the file size number field 414
and the file size magnitude field 418. For example, if a file
being sentis 5 megabytes in size, the file size number 414 may
be encoded as “0000000000000101,” the number “5” in the

US 9,094,186 B2

11

binary system, and file magnitude 419 may be encoded as
“11,” which may represent megabytes in the current system.

Reserved bits field 420 are optionally allocated for future
use as the digital radio system is dynamically designed so
changes can be readily incorporated in the current system.

Status flags field 422 may be used during the operation of
the digital radio to set flags for various data used by the user
device 140.

Group identifier (ID) field 428 can be used to identify
stored digital data blocks that can be combined and re-used.
This, in turn, decreases the data load to be transmitted by
broadcaster 230 by reducing redundant data transmission.
FIGS. 5-9 depict the operations of a user agent module
employed by the user device 140. FIG. 5 is a flowchart depict-
ing a user agent handler invocation process 500, the first
process encountered by the incoming data at the receiver end.
The user agent first parses the incoming digital data (step
510). The parsing may be done according to frequency, data
type, modulation (such as AM or FM), or any number of other
useful parameters. The agent then searches the parsed data
(step 520). If the data relates to an external command, (step
550), then the user agent invokes the message handler appro-
priate for the external command (step 570). If the data relates
to none of the external commands, then an invalid command
message is produced (step 560). After the determination is
made on whether if the data relate to external command and
appropriate actions taken at either step 560 or 570, the invo-
cation process returns to step 520 and iterates through the rest
of the incoming data. During the iteration process, the user
agent checks for the end of the data stream at step 530. An
indication for the end of the data stream may be an end-of-file
(EOF) flag in status flag field 422. When the end of the data
stream is reached, the user agent ends the handler invocation
process (step 540).

FIG. 6 is a flowchart depicting the operation of the user
agent handler after it has been invoked at step 570 above. The
user agent handler first receives a notification message from
the user agent (at step 610). It then processes the information
received at step 620 and builds an extensible mark-up lan-
guage (XML) service invocation message corresponding to
the incoming message (step 630). It should be noted that
although the invocation message is described to be written in
XML in this embodiment, the message may also be written in
HTML or other mark-up languages. The invocation message
is then sent to the service register (step 640).

The process 600 then continues in a series of iterative steps
in which the handler waits for the response from a service
register module, at steps 650-680. If either the service register
responds prior to the timeout of the handler’s waiting period
(step 660), or if the handler’s waiting period times out (step
680), the process 600 ends (step 690). The timeout threshold
may be set statically, such as 45 seconds, in which responses
from all service registers are required to be submitted to the
handler in that time span. The timeout threshold may also be
set dynamically, so that a different threshold is set depending
on which service register is requested.

FIG. 7 is a flowchart depicting an exemplary process 700
performed by a native service register. A native service reg-
ister must have embedded within it a executable module or
procedure that is stored by the user device 140. According to
the process 700, the user device 140 first receives the invoca-
tion message sent in step 640 of FIG. 6 above (step 710). It
then checks to see if the incoming message is a request for
service (step 720). If not, then the operation of service regis-
ters moves back to step 710 to wait for a next invocation
message. If so, then the register executes the request at step
730. If the execution of the request is successful, when

10

15

20

25

30

35

40

45

50

55

60

65

12

checked at step 740, a success message is built at step 750 and
the result is returned at step 770 to the user agent handler. If
the execution of the request is a failure when checked at step
740, an error message is built at step 760 and the result is
returned at step 770 to the user agent handler. After the result
is sent to the user agent handler, then the process 700 ends at
step 780.

FIG. 7B illustrates non-limiting alternative embodiment
service invocation instead of request 730, a request handler is
invoked 7304. Upon invoking the handler, the system deter-
mines if the handler exists 7405, if the handler does not exist
the request is ignored 7605 and illation continues 7105. If the
handler does exist 7405, a request is sent to the handler 7505
and illation continues 7105.

FIG. 8 is a flowchart depicting an exemplary process 800
performed by a non-native service register. A non-native ser-
vice register may not have embedded within itself an execut-
able module or procedure, but rather it may be able to out-
source the service request to other modules, which may or
may not include other native service registers or a communi-
cation with an external device over a wireless or hard-wired
network connection. Process 800 begins at step 802 wherein
the non-native service handler receives the invocation mes-
sage sent by the user agent handler at step 640 of FIG. 6
above. It then checks to see if the incoming message is a
request for service (step 804). If not, then the operation of
service registers moves back to step 802 to wait for the next
invocation message. If so, then the request message is parsed
according to the services required at step 806. Each parsed
message is then validated at 808. If the message is determined
to be valid at step 810, it is used to invoke a service module at
step 812. The result of the service is monitored and stored at
step 814. A response message is written with the result infor-
mation at step 816 and at step 820 the response message is
sent to the user agent handler. If the message is determined to
be invalid at step 810, then an error response is built at step
818 and at step 820 the error response message is sent to the
user agent handler. After the result is sent to the user agent
handler, process 800 ends (step 820).

FIG. 9 is a flowchart depicting a process 900 by which a
request message is validated. This validation process 900 is
called at step 808 in FIG. 8. First, the request is sent by the
service register by received by the validation module at step
910. The request message then undergoes a series of tests to
see if the message has a valid service reference, a valid param-
eter mask, and a valid request so that the service is executable
by an available software module. These tests are performed at
steps 920, 930, and 940, respectively. If any of the test fails,
the message is determined to be invalid at step 950, and an
invalid result is returned (step 970). If the request message
passes all the tests, the message is determined to be valid at
step 960, and a valid result is returned (step 970). It should be
stressed that the three tests in steps 920, 930 and 940 are only
exemplary tests. Other embodiments of the present system
may contain other tests or have fewer tests without moving
away from the spirit of the inventive system.

Inone embodiment of the current system, there are features
that require sufficient security to insure that there is no data
tampering when communications are in transmit. For
example, in an embodiment of the present invention where
the user is able to purchase audio CD’s using the digital radio
system, communications regarding the purchase order to and
from the user, such as the initial order request from the user
and the order confirmation to the user, should be adequately
encrypted and authenticated. The types of authentication used
in the present system may be a one-way authentication, a
two-way authentication, or a three-way authentication.

US 9,094,186 B2

13

In a one-way authentication, the sender transmits a times-
tamp, a nonce value, and a particular user’s private key along
with the payload data. A nonce value is a temporary value
unique to all valid authenticated data. The receiver may then
authenticate the information using the public key equivalent
of the private key transmitted by the sender.

In a two-way authentication, in addition to going through
one-way authentication, after decrypting the transmitted data,
the receiver transmits a reply message to the sender contain-
ing a new timestamp, the original nonce value, and a new
nonce value. The reply message will be encrypted with the
sender’s public key encryption, which the sender may decrypt
with the corresponding private key.

A three-way authentication may be used if the sending
device and the user device 140 have not achieved synchroni-
zation. In addition to going through two-way authentication,
after receiving the reply message, the sender transmits
another reply to the receiver, containing the nonce value
included in the first reply. After matching nonce values, the
user device 140 may disregard the timestamps.

FIG. 10 is a block diagram depicting an exemplary one-
way authentication process 1000 using a hash function. At
step 1010, a message is first processed with a hash function to
create a message digest 1020. The message digest is then
encrypted using a private key K, (step 1030). The private key
K, is then added to the encrypted message as a header and a
message digest with header is produced (Step 1040). The
message digest with header is then attached to the original
message to produce the message packet at step 1050, which is
then transmitted to the user device 140 (step 1060). The
message digest with header and the original message are then
extracted from the received message packet by the user device
140. The header of the message digest will be detected by the
corresponding public key K, (step 1070). The detected header
will be used to re-hash the received original message (step
1080), and the re-hashed message digest is compared with the
received message digest (step 1090). If the message is deter-
mined to be authentic then the re-hashed message digest will
be the same as the received message digest. If the two do not
match, then the message is determined to be inauthentic and
the message is discarded. This effectively prevents tampering
by an outside party during the transmission of the message,
since changing of even one bit of the original message may
result in a significantly different hash which will not be rec-
ognized by the user device 140.

FIG. 11 is a flowchart depicting an exemplary process 1100
for authentication performed by the user device 140. The user
device 140 first detects an incoming signal and reads it to
determine the current authentication mode (step 1102). Next,
the user device 140 detects and reads the timestamp value, the
nonce, and various other header information necessary for
authentication and stores them in memory (step 1104). The
receiver then may confirm the authentication mode (step
1106). If the current authentication mode is the one-way
mode, the receiver then proceeds to step 1114, discussed
further below. If the current authentication mode is not one-
way, then the authentication mode may be two-way or more,
such as three-way. In such event, the process 1100 continues
to step 1108 where the user device 140 transmits to the sender
a new timestamp, the original nonce and a new nonce, as per
the process of two-way authentication discussed previously
above. The receiver then waits for a reply message from the
sender (step 1110). The reply message may be an acknowl-
edgment from the sender for receiving the new timestamp and
the new nonce, or it may be an additional nonce for further
multiple-way authentication. The receiver makes that differ-
entiation at step 1112.

10

15

20

25

30

35

40

45

50

55

60

65

14

Ifthe reply is an acknowledgement, then the authentication
mode is determined to be two-way authentication, and the
receiver proceeds to step 1114. Ifthe reply is not an acknowl-
edgement, the user device 140 examines the incoming reply
to determine whether the current authentication mode is
three-way at step 1116. If the reply is not further authentica-
tion information, then the process moves once again to step
1114. Ifthe reply contains further authentication information,
then the receivers transmit additional nonces (step 1118) and
will receive additional replies by moving back to step 1110
after step 1118. It is noted that although in the current discus-
sions the most numerous multiple-way authentication mode
is three-way mode, n-way authentication mode can be
achieved by executing the iteration comprised of steps 1110,
1112, 1116 and 1118 n times.

At step 1114, the receiver detects and reads the hash algo-
rithm ID, the key length, any digital signature information,
and any other data necessary to decrypt the incoming mes-
sage. These data fields will be discussed at length in the
description of FIG. 12. If the authentication mode of the
incoming message is two-way or more, then the timestamp
information and the nonce information from the sender and
the receiver will be compared as the first step of authentica-
tion (step 1120). Otherwise, the message is discarded if the
timestamp and nonce information do not match. If the infor-
mation does match, then the incoming un-hashed message is
hashed at step 1122 and the incoming hash digest in decrypted
at step 1124. The two results are compared at step 1126. If the
results are equal, then the data is authentic and the message is
passed onto the various other parts of the user device 140,
such as the user handler, at step 1128. If the results are not
equal, then the data is determined to be inauthentic and the
message is discarded at step 1130.

FIG. 12 is a block diagram depicting an exemplary authen-
tication header 1200 that may be used in the process 1100
depicted in FIG. 11. The different fields 1202-1238 in the
header 1200 may be arranged in the same order that they will
be detected by the receiver.

The authentication mode field 1202 is used to indicate the
current authentication mode, that is whether it is one-way,
two-way, three-way, or other multiple-way modes.

The timestamp 1206, first nonce value 1210, and second
nonce value 1214 are information used in the authentication
process 1100. Although in this particular embodiment, two
nonce values are allotted, it would be fairly clear to one of
ordinary skill in the art to increase the number of nonce value
fields in the header so to increase the multiple-way authenti-
cation that may be used, as described previously herein.

Hash algorithm ID 1218 is a code for the hash algorithm
used by the sender. This is used by the user device 140 to hash
the un-hashed message in order to compare it against the
decrypted hash digest message. The key length 1224 indi-
cates the length of the public key that will be used to decrypt
the hash digest, while public key 1228 contains the actual
public key.

Digital signature length 1232 indicates the length of the
digital signature and the digital signature field 1236 contains
an indication of the user’s identity which may be encrypted or
signed by the sender. Items 1204, 1208, 1212, 1216, 1220,
1226, 1230, 1234, 1238 are examples of each of respective
fields 1202, 1206, 1210, 1214, 1218, 1224, 1228, 1232, and
1236 in the authentication header.

Quality of Service (QoS) Management

Different degrees of reliability with respect to transmission
of data over an IBOC broadcast are termed “Quality-of-Ser-
vice” (QoS). In an IBOC system, a data channel is composed
of an infinite number of RF carriers, that are specific frequen-

US 9,094,186 B2

15

cies adjacent to central frequency over which analog data is
broadcast. A finite number of these RF carriers may be used to
reliably broadcast over a reasonable distance. Mainly due to
the susceptibility of interference, some RF carriers can send
large amounts of data over long distances with little chance of
error, while others cannot. The RF carriers become more
unreliable depending upon their proximity to central fre-
quency analog data, or adjacent frequency data.

Since the entirety of the data channel is available for broad-
casting, the broadcaster may subdivide the data being broad-
cast into data that needs to be transmitted with high speed and
efficiency and that which does not require high speed or
efficiency.

The focus of QoS system is the management of these
sub-channels, and corresponding pricing for data, such as
advertisements, based on the reliability and speed of different
parts of the channels. Data services will request sub-channels
for broadcast of equal sized data service packets containing
data blocks. A data service is a collection of similarly pur-
posed data, such as a communication of data between two
parties. A data service packet represents a single unit of data
for a particular data service and assembled from the indi-
vidual data service packet segments, being all of the data
within the data block for a particular service. A data service
packet transmission may be interleaved over time to reduce
distortion of the data being broadcast. A data block is a
physical series of data bits, created from one or more of the
RF carriers on a radio channel over a given period oftime. The
beginning of the block may be indicated by a recognizable
signal pattern, which may be referred to as a synchronization
pulse. The data block will consist of all the radio frequency
carriers being read by the user device 130 for n” millisecond
over a larger period of time. All of the data for a block for a
given RF carrier may be referred to as a block segment. A
single data block may carry data for more than one data
service, which in turn may be identified by a series of header
bits.

The reliability of a sub-channel can be determined by the
number of RF carriers used, or the size of the sub-channel,
and the positions of the individual RF carriers on the spectrum
in relation to the main data channel. Each RF carrier may be
indexed 1 through n. The most robust RF carrier is 1, and a
formula is used to determine the relative reliability of each
subsequent RF carrier. The result of this formula is referred to
herein as a “QoS Rating”. In an exemplary method, the aver-
age QoS Rating of the sub-channels may be used to determine
the “QoS Level” of that sub-channel. Given both the desired
number of sub-channels and the desired QoS Level for each
sub-channel, as requested by the data service, such sub-chan-
nels may be dynamically allocated in order to satisfy that
demand.

A transmission proxy acts as the controller between data
services and the data channel. A data service will make a
request to the transmission proxy with all of the parameters
for sending the data, encapsulated in a data service object.
The transmission proxy then communicates with the QoS
Manager (described below) for a sub-channel object, and
thereby inserts the data into the channel.

In an exemplary process, there exists three methods by
which RF carriers can be grouped into sub-channels. These
are as follows: (i) static, wherein the sub-channels are pre-
defined before a data service is given access; (ii) dynamic,
wherein the sub-channels are defined at the time of the request
for a QoS Level sub-channel; and (iii) hybrid, wherein the
selection of RF carriers is both static and/or dynamic. In a
static scenario, the data service makes a request for the sub-
channel with a desired QoS Level, and if that sub-channel is

20

40

45

55

16

available it is returned. Otherwise, an error message is
returned. If a valid handle is returned, the data service will
then use the sub-channel to transmit data, and the sub-channel
is considered allocated. Upon completion of the data service
use of a sub-channel, the sub-channel does not have to be
freed because it is statically defined.

In a dynamic scenario, if a collection of RF carriers is
available produce a sub-channel with the desired QoS Level
at the time of the request, the RF carriers are grouped and the
handle for the sub-channel is returned. Otherwise, an error
message is returned. When the data service has completed
using the sub-channel, it must be returned in this dynamic
environment. In a hybrid scenario a pre-defined number of
sub-channels are static and the remaining RF carriers utilize a
dynamic scenario.

The QoS Manager interacts with a transport system, or
other communication system such as a modem operating in
conjunction with an application program interface (API), in
order to gain access to sub-channels and allocate them appro-
priately. The transport, or modem may be any device that
creates the waveforms on the RF carriers. The API provides a
low level interface to the functions of the modem, such as
asking for percentages of a given sub-channel, or acknowl-
edging the status of a given sub-channel. The QoS Manager
must be able to create all of the three above mentioned group-
ings of RF carriers into sub-channels and maintain a pool of
RF carrier objects produced by the modem that hold infor-
mation regarding the reliability and status of'the RF carrier or
sub-channel it represents.

There exist at-least three statuses for a sub-channel object:
busy; available; and killed. A static object will be killed when
the dedicated configuration has been compromised by other
dedicated configurations. A dynamic object will be killed
when the channel can no longer support that level of band-
width without compromising service on other sub-channels.
Eventually these killed sub-channels will be removed from
the pool of sub-channels by the QoS Manager. The object may
also have a lease time, during which it becomes busy and no
other process may use it. If the object has not been returned to
the pool by the end of the aforesaid lease time it will auto-
matically be returned to the pool by the QoS Manager. The
QoS manager may also periodically recycle sub-channel
objects when they are not in use, which requires destroying
and re-building them.

FIGS. 14 and 15 describe the exemplary structure and
method for initialization, selection and assignment of sub-
channels and RF carriers based on Quality of Service defini-
tions according to the present invention. FIG. 14 displays an
exemplary process 1400 for initialization of sub-channels
based on static parameter definitions which are examined at
step 1402. From these definitions, the available sub-channels
are determined at step 1404. Furthermore, the sub-channels
are stored in an addressable memory structure at step 1406,
after which process 1400 ends.

FIG. 15 provides an exemplary process 1500 for the selec-
tion and assignment of sub-channels based on parameters
defining the quality of service desired, which are examined at
step 1508. These parameters are used to determine whether
the request for a sub-channel is static or dynamic (step 1510).
If the request is static, the availability of that specific channel
is further determined at step 1512. If the requested channel is
available, it is retrieved from an addressable memory struc-
ture at step 1514. The addressable memory structure used at
step 1514 may be the same memory used at step 1406. Fol-
lowing retrieval, a lease time is set and the sub-channel iden-
tification is returned to the entity that requested it at step 1516.

US 9,094,186 B2

17

If, on the other hand, the requested channel is not available, an
error message is returned to the entity that requested it at step
1518.

If'the request is for a dynamic sub-channel at step 1510, the
available sub-channels are determined at step 1520. The abil-
ity to create the requested sub-channel is further determined
at step 1522. If the requested sub-channel can be built then a
lease time is set and the sub-channel is returned to the entity
that requested it at step 1516. If the requested sub-channel
cannot be built, an error message is returned to the entity that
requested it at step 1524.

FIG. 16 is a description depicting an exemplary Java inter-
face structure for the QoSManager 1610, that handles the
creation of sub-channels and the level of service for a sub-
channel. Furthermore, it is the point of entry for data services
requiring a sub-channel to send data. The interface QoS Man-
ager includes a getSub-channel() command 1620 that returns
a sub-channel of a specific QoS level, or returns null if the
specified sub-channel cannot be returned. In addition, the
method detail of the QoS Manager 1630 provides exemplary
parameters for each element in the interface device method
summary.

FIGS. 17A-17B are descriptions depicting an exemplary
Java interface structure for an Interface RF carrier 1702, that
handles the reading and writing of information onto a particu-
lar RF carrier comprising a groups of sub-channels. The inter-
face RF carrier 1702 first involves clear() function 1704,
which is an initialization function that empties the RF carrier
of all data and returns it to the RF carrier pool. The getQoS-
Rating() function 1706 assigns a rating to the RF carrier
based on reliability. This rating may be used to determine the
speed of data transfer onto the RF carrier as well as the data
volume. The read() function 1708 reads data from the RF
carrier, while the write() function 1710 writes data onto the
RF carrier.

The getQosRating() 1712 function is a public function that
has no input arguments and may return the RF carrier’s rating
as an integer. The read() function 1714 is a public function
that has argument array which includes the data read from the
RF carrier and an integer representative of a number of bytes
requested to be read. It returns the number of bytes actually
read as an integer.

The write() function 1716 is a public function that has
argument array which is the data to be written to the RF
carrier. It returns the number of bytes actually written as an
integer.

The clear() function 1718 is a public function that has no
input arguments and returns nothing. Instead, it initializes the
RF carrier by emptying it of all data and returning it to the RF
carrier pool so that it can available for future use.

FIG. 18 is a description depicting an exemplary Java inter-
face structure for an Interface RF carrierFactory 1802, which
handles requests to create new RF carriers within the trans-
mission band. The interface RF carrierFactory 1802 involves
the function newRF carrier() 1804 which creates a new RF
carrier with a specified QoS rating.

The function newRF carrier() 1806 is a public function that
has an integer input argument rating, which specifies the QoS
rating of the new RF carrier. This function returns the object
RF carrier, which may be a pointer or a memory location with
floating data type containing the frequency of the new RF
carrier.

FIGS. 19A-19B are descriptions depicting an exemplary
Java interface structure for the Interface RF carrierPool mod-
ule 1902, which handles the locking and unlocking of RF
carriers for use by a sub-channel. This interface prevents

10

15

20

25

30

35

40

45

50

55

60

65

18

unnecessary reconstruction of RF carriers by the interface RF
carrier Factory 1802 previously discussed.

The interface RF carrier Pool 1902 involves the checkIn()
function 1904, which is a function that notifies the RF carrier
pool that a particular RF carrier object passed through as its
input argument is available for checkout.

The checkout() function 1906 moves a RF carrier with a
particular QoS rating from the RF carrier pool to use by a
sub-channel. The GetAvailableRating() function 1908
returns the QoS ratings of the available RF carriers currently
in the pool. The function GetCount() 1910 returns the current
size of the RF carrier pool. The method detail of the interface
RF carrier Pool 1902 further describes the functions used by
the interface. The function checkout() 1912 is a public func-
tion that has an integer input argument qosRating, which
specifies the QoS rating of the requested RF carrier. A RF
carrier object is returned. The function throws to an error
message when no RF carrier with the input Qos rating is
available in the pool. The function checkIn() 1914 is a public
function that has a RF carrier object input argument subc
whose frequency, QoS rating, and other attributes will be
listed in the pool so that the RF carrier is made available for
checkout. The function returns to an error message if there is
already a RF carrier in the pool with the same QoS rating, so
to reduce unnecessary check-ins and check-outs.

The function getAvailableRatings() 1916 is a public func-
tion that has no input arguments, but it returns an integer array
storing the available QoS rating when the function is called.

The function getCount() 1918 is a public function that also
has no input arguments, but returns an integer that represents
the current size of the RF carrier pool, or the number of RF
carriers available, when the function is called.

FIGS. 20A-20B are descriptions depicting an exemplary
Java interface structure for the interface sub-channel 2002
which handles data services to send data to a channel or
receiving data from a channel. The interface sub-channel
2002 includes a destroy() function 2004, which removes all
data from a particular channel and returns all the RF carriers
that the sub-channel is comprised of.

The function getlnputStream() 2006 gets the data stream
that is used to read data from the sub-channel. The function
getOutputStream() 2008 gets the data stream that is used to
send data to the sub-channel. The function getQoSLevel()
2010 gets the QoS rating of the sub-channel currently in use.

The function GetOutputStream() 2012 is a public function
that has no input arguments. When called, it returns an Out-
putStream object that contains the data that will be sent to the
sub-channel. The function returns an error message if the
output stream cannot be returned. Such a condition occurs if
the output stream does not exist or is otherwise busy.

The function GetlnputStream() 2014 is a public function
that operates similarly to the function GetOutputStream()
2012. GetlnputStream() 2014 also has no input arguments.
When called, the function returns an InputStream object that
will be used to store the data read from the sub-channel. The
function returns an error message if the InputStream object
cannot be returned. Such a condition occurs if the input
stream does not exist or is otherwise busy.

The function getQosLevel() 2016 is a public function that
has no input arguments and returns the QoS rating of the
sub-channel as an integer.

The function destroy() 2018 performs the cleanup work
required to inactivate a sub-channel. When called, the func-
tion removes all data from the sub-channel, dissembles the
sub-channel into various RF carriers and returns an array of
integers that indicate the particular RF carriers that were
extracted from the sub-channel These RF carriers may be

US 9,094,186 B2

19

made available to other sub-channels once they are returned
to the RF carrier pool using such interface as the RF carrier-
Pool interface 1902.

FIG. 21 is a description depicting an exemplary Java inter-
face structure for the interface Sub-channelFactory 2102,
which is called to create new sub-channels from available RF
carriers. The interface uses the function newsub-channel()
2104 to create a new sub-channel using a particular group of
RF carriers. The function newSub-channel() 2106 is a public
function that has an input argument of an array of RF carrier
objects. These RF carrier objects are to be used by the func-
tion to create the new sub-channel. This function 2016 returns
a sub-channel object that is ready to be used in the system by
such interfaces as interface SubChannel 2002. The function
2-16 generates an error message when the sub-channel cannot
be created by the RF carriers indicated by the input array. This
may occur when the RF carriers indicated by the input array
is not available in the RF carrier pool, such as when these RF
carriers are used by another sub-channel.

FIGS. 22A-22B are descriptions depicting an exemplary
Java structure for the interface Service 2202, which allows a
receiver to handle the incoming information. The interface
Service 2202 involves the function Authenticate() 2204,
which confirms the authenticity of the sender by matching
timestamps and nonces with the process described by FIG.
11. The function getlnputstream() 2206 is the same process
as the function 2206 described previously. Similarly, the
function getOutputStream() 2208 is the same process as the
function 2008 described previously. The function getService-
MetaData() 2210 is used to read the incoming header and
other information. The specifics of the function will be dis-
cussed in the descriptions for FIGS. 24A-24C below. The
function setServiceMetaData() 2212 reads the information
received by getServiceMetaData() 2210 and configures the
receiver unit accordingly. The function getServiceMeta
Data() 2214 is a public function that has no input arguments
and it returns a class of type ServiceMetaData when called.
The particular fields in the class ServiceMetaData will be
discussed in the descriptions for FIGS. 24A-24C. The func-
tion setServiceMetaData() 2216 is a public function that has
no input arguments and returns nothing. When called, it con-
figures the receiver according to the ServiceMetaData class
recorded by getServiceMetaData() 2214. The functions
getOutputStream() 2218 and getInputStream() 2220 are the
same functions as getOutputStream() 2012 and getlnput-
Stream() 2014, described previously above. The function
Authenticate() 2222 is a public function that has the input
argument of type “devicekey” which is an object that maybe
used identify the particular sender of the transmitted data. The
function returns nothing, but it throws to an error message if
unauthentic information is found.

FIG. 23 is a description depicting an exemplary Java struc-
ture for the interface ServiceListener 2302, which is respon-
sible for delegating the construction of sub-channels and
handing them off to the appropriate handler objects. To
accomplish this, the interface ServiceListener 2302 must
have access to interfaces RF carrierPoll 1902 and Sub-chan-
nelFactory 2102. The interface ServiceLlistener 2302 also
requires data on the services currently that are actively being
received. Such data is supplied by the function getServices()
2304 that returns an array that contains information on the
services that are actively being received.

FIGS. 24A-24C are descriptions depicting an exemplary
Java structure for the Interface ServiceMetaData 2402, which
extracts the header information from the incoming data
stream described in FIG. 4. The interface ServiceMetaData
2402 uses a separate function to extract each block of header

10

15

20

25

30

35

40

45

50

55

60

65

20

described in FIG. 4. The function getCategory() 2404 is a
function that extracts the Content Category 412 in the header.
Because Content Category is a group of 5 bytes indicating 5
levels of content scope, getCategory() 2404 has an input
argument of integer type so that only the byte associated with
the specified level is returned. The function getContentRat-
ing() 2406 is a function that extracts the Content Rating 410
in the header. The function getDataSize() 2408 is a function
that extracts the File Size Number 414 in the header. The
function getDataSizeMagnitude() 2410 is a function that
extracts the File Size Magnitude 418 in the header. The func-
tion getDomainID() 2412 is a function that extracts the
Domain ID 408 in the header. The function
geteventlndicator() 2414 is a function that extracts the Event
Indicator 426 in the header. The function getGrouplD() 2416
is a function that extracts the Group 1D 428 in the header. The
function getMimeType() 2418 is a function that extracts the
Mime Type 430 in the header. The function getReceiver-
TimeStamp() 2420 is a function that extracts the Receiver
Time Stamp 406 in the header. The function getReserved
Bits() 2422 is a function that extracts the reserved bits 420 in
the header. The function getSenderTimeStamp() 2424 is a
function that extracts the Sender Timestamp 404 in the
header. The function getStatusBits() 2426 is a function that
extracts the Status Bits 422 in the header. The function
getSyncCue() 2428 is a function that extracts the Synchro-
nization Cue 402 in the header. The function setReceiver-
TimeStamp() 2430 does not extract any information from the
header, but configures the receiver so that the receiver will
transmit the timestamp stored in the input argument
“tStamp.” After all the information is extracted from the
incoming data, the interface ServiceMetaData 2402 stores the
extracted data in a class with fields that correspond to the
functions used by the interface, and that each field stores the
header data extracted from the incoming data stream by the
corresponding functions. This class can be used by other
interfaces, such as interface service 2202.

In the operation of radio systems including the present
invention, there are numerous repetitions of the same audio
data. Music is often repeated numerous times in the course of
one day, and commercials can be repeated numerous times in
a matter of minutes or hours. Therefore, it would be prudent
for the receiver to record a number of these audio data in
temporary memory location so to reduce the transmission
data load while maintaining the operation of the system. The
present invention accomplishes this data recording by trans-
mitting a synchronization cue to create an “audio cul-de-sac”
that is recognized by a receiver, such as user device 140, and
stored in a buffer or memory of the same. The audio cul-de-
sac stored by user device 140 may also be multimedia infor-
mation that a user can recall at any desired time.

FIG. 25 is a flowchart depicting the operation for using a
synchronization cue to create an audio cul-de-sac. Itis advan-
tageous to use a synchronization cue to create an audio cul-
de-sac because the synchronization cue contains data that
identifies the multimedia data that will be recorded. The
receiver first waits for a synchronization cue at step 2502.
When a cue is received, a check is performed at step 2504 to
ascertain if the cue is a cue to signal the start of recording. If
not, the user device 140 returns to step 2502. If so, then the
user device 140 starts to record multimedia data at step 2506.
While the multimedia data is being recorded, the user device
140 may also check for another synchronization cue at step
2508. If the cue is determined to be an end cue at step 2510,
then the user device 140 stops recording the audio data. If the
cueis not an end cue, then buftfer check is done by the receiver
atstep 2512. If the buffer is determined to be full at step 2514,
then the receiver also stops recording. If the buffer is not full,

US 9,094,186 B2

21

then the receiver returns to the state at step 2508 and waits for
a synchronization cue. This process insures that the recording
of multimedia data is stopped when an end cue is received or
when the buffer has reached full capacity, which ever occurs
first. After the recording, the data file in the buffer is marked
with the synchronization cue that started the recording pro-
cess, at step 2516, so that the file is identified, and the file is
saved in cache at step 2518.

After the audio cul-de-sac is recorded, synchronization
cues can also be used to trigger the cul-de-sac so that the audio
file is played. FIG. 26 is a flowchart depicting the operation
for using a synchronization cue to trigger an audio cul-de-sac.
The user device 140 first begins by waiting for a synchroni-
zation cue at step 2610. After a cue is received, a determina-
tion is made at step 2620 as to ascertain if the received cue is
a playing cue. If not, then the user device 140 returns to
waiting for a cue at step 2610. If so, then the cue is read and
the file ID contained within the cue is determined at step
2630. A search is performed at step 2640 to find a recorded
audio file that has a file ID matching the one found in the
playing cue. If an audio file is found at step 2650, then the file
is played at step 2660. If not, then the receiver returns to
waiting for a cue at step 2610.

In one non-limiting example embodiment, text and other
media may be substituted for the audio data in the audio
cul-de-sac. For example, a broadcaster may use a synchroni-
zation queue to synchronize piece of text to broadcast.

Although the invention has been described in detail in the
foregoing embodiments, it is to be understood that the above
descriptions have been provided for purposes of illustration
only and that other variations both in form and detail can be
made thereupon by those skilled in the art without departing
from the spirit and scope of the invention, which is defined
solely by the appended claims.

What is claimed is:
1. A method of transmitting digital data on at least one RF
carrier of an audio broadcast, comprising:
identifying digital data associated with, but different than a
set of broadcast data;
determining synchronization data corresponding to a
broadcast event within the set of broadcast data;
assembling a data packet including the digital data and the
synchronization data; and
transmitting the data packet to a receiver before the broad-
cast event, such that the broadcast data is presented with
the digital data based on the synchronization data to a
consumer of the broadcast data.
2. The method of claim 1, wherein the digital data corre-
sponds to multimedia information for display on the receiver.
3. The method of claim 2 wherein the multimedia informa-
tion may be stored on the receiver for recall by the consumer
at a desired time.
4. The method of claim 1, wherein said transmitting further
comprises transmitting the data packet in a digital format on

10

15

20

25

30

40

45

50

22

atleast one RF carrier of a central analog frequency on which
the set of broadcast data is transmitted.

5. The method of claim 1 further comprising transmitting
the set of broadcast data on a central analog frequency.

6. The method of claim 1 further comprising determining
authentication data for allowing the receiver to authenticate
the data packet.

7. The method of claim 6 wherein the assembling further
comprises including the authentication data in the data packet
for allowing the receiver to authenticate the source of the data
packet.

8. The method of claim 6 wherein said authentication data
includes at least one of a time stamp and nonce information.

9. The method of claim 1 wherein the assembling com-
prises encrypting the data packet with a public key.

10. The method of claim 1 further comprising determining
a file size of the data packet.

11. The method of claim 10 wherein the transmitting fur-
ther comprises selecting at least one RF carrier of a central
analog frequency based on the file size.

12. The method of claim 11 wherein the transmitting fur-
ther comprises transmitting the data packet on the selected RF
carrier.

13. The method of claim 1 wherein said synchronization
data comprises an indication that the digital data be stored by
the receiver for recall by the consumer at a desired time.

14. The method of claim 4 wherein the central analog
frequency corresponds to a single frequency on one of an
amplitude modulated band and a frequency modulated band.

15. The method of claim 1 wherein said data packet com-
prises data in an extensible mark-up language format.

16. The method of claim 1, wherein the broadcast data is
analog data.

17. The method of claim 1 wherein the broadcast data is
digital data.

18. A computer comprising:

a user interface; and

a control system operatively coupled to the user interface

and adapted to:

identify a set of broadcast data that will be sent to a
consumer through an RF channel as part of a one-way
audio broadcast;

identify digital data associated with, but different than
the set of broadcast data;

determine synchronization data corresponding to a
broadcast event within the set of broadcast data;

assemble a data packet comprising:
the digital data; and
the synchronization data; and

transmit the data packet to a receiver before the broad-
cast event using an in-band, on-channel format, such
that the set of broadcast data is presented with the
digital data based on the synchronization data to the
consumer of the broadcast data.

#* #* #* #* #*

